Pineal Research: The Decade of Transformation

  • G. C. Brainard
Conference paper
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 13)


In a little more than a decade (1954–1965), the pineal gland was demonstrated to be an active neuroendocrine transducer in contrast to a functionless vestige as earlier supposed.

The two major contributions which laid the groundwork for the development of modern pineal science were Kitay and Altschule’s book The Pineal Gland (1954) and Lerner’s isolation and structural work on melatonin (1958).

After Lerner’s discovery, biochemists, anatomists, and physiologists determined much about the structure and function of the pineal gland. In 1965, Wurtman and Axelrod tied this earlier work together by characterizing the pineal as a neuroendocrine transducer.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Axelrod, J., Weissbach, H.: Enzymatic O-methylation of N-acetylserotonin to melatonin. Science 131, 1312 (1960).CrossRefPubMedGoogle Scholar
  2. Baschieri, L., DeLuca, F., Cramarossa, L., DeMartino, C., Oliverio, A., Negri, M.: Modifications of thyroid activity by melatonin. Experientia 19, 15–17 (1963).CrossRefPubMedGoogle Scholar
  3. Colloque sur la Glande Pinéale. Clermont Ferrand, May, 1962. Ann. Endocrinol. (Paris) 24, 197-390 (1963).Google Scholar
  4. Dodt, E., Heerd, E.: Mode of action of pineal nerve fibers in frogs. J. Neurophysiol. 25, 405–429 (1962).PubMedGoogle Scholar
  5. Eakin, R. M.: Photoreceptors in the amphibian frontal organ. Proc. Nat. Acad. Sci. Wash. 47, 1084–1088 (1961).CrossRefGoogle Scholar
  6. Eakin, R. M., Westfall, J. A.: Fine structure of the retina in the reptilian third eye. J. Biophys. Biochem. Cytol. 6, 133–134 (1959).CrossRefPubMedCentralPubMedGoogle Scholar
  7. Ebels, I., Moszkowska, A., Scemama, A.: Étude in vitro des extraits épiphysaires fractionnés. C.R. Acad. Sci. (Paris) 26, 5126–5129 (1965).Google Scholar
  8. Fiske, V. M., Bryant, K., Putnam, J.: Effect of light on the weight of the pineal in the rat. Endocrinology 66, 489–491 (1960).CrossRefGoogle Scholar
  9. Hoffman, R. A., Reiter, R. J.: Pineal gland: Influence on gonads of male hamsters. Science 148, 1609–1611 (1965).CrossRefPubMedGoogle Scholar
  10. Holmgren, N.: Zur Kenntnis der Parietalorgane von Rana temporaria. Ark. Zool. 11, 1–28 (1918).Google Scholar
  11. Jochle, W.: Über die Wirkung eines Epiphysenextraktes (Glanephin) auf Sexualentwicklung und Sexualzyklus junger weiblicher Ratten unter normalen Haltungsbedingungen und bei Dauerbeleuchtung. Endokrinologie 33, 287–295 (1956).PubMedGoogle Scholar
  12. Kappers, J. A.: The development, topographical relations and innervation of the epiphysis cerebri in the albino rat. Z. Zellforsch. Mikrosk. Anat. 52, 163–215 (1960).CrossRefPubMedGoogle Scholar
  13. Kappers, J. A., Schadé, J. P., eds.: Structure and Function of the Epiphysis Cerebri (Progress in Brain Research, Vol. 10). Amsterdam: Elsevier. 1965.Google Scholar
  14. Kitay, J. I.: Effects of pinealectomy on ovary weight in immature rats. Endocrinology 54, 114–116 (1954).CrossRefPubMedGoogle Scholar
  15. Kitay, J. I., Altschule, M. D.: Effects of pineal extract administration on ovary weight in rats. Endocrinology 55, 782–784 (1954).CrossRefGoogle Scholar
  16. Kitay, J. I., Altschule, M. D.: The Pineal Gland. Cambridge, Mass.: Harvard University Press. 1954.Google Scholar
  17. Lerner, A. B., Case, J. D., Takahashi, Y., Lee, T. H., Mori, W.: Isolation of melatonin, the pineal gland factor that lightens melanocytes. J. Am. Chem. Soc. 80, 2587 (1958).CrossRefGoogle Scholar
  18. McCord, C. P., Allen, F. P.: Evidences associating pineal gland function with alterations in pigmentation. J. Exp. Zool. 23, 207–224 (1917).CrossRefGoogle Scholar
  19. Milcou, S. M., Pavel, S., Neascu, C.: Biological and Chromatographic characterization of a Polypeptide with pressor and oxytocic activities isolated from bovine pineal gland. Endocrinology 72, 563–566 (1963).CrossRefGoogle Scholar
  20. Oksche, A., von Harnach, M.: Der Feinbau des Organon frontale bei Rana temporaria und seine funktionelle Bedeutung. Morph. Jahrb. 92, 123 to 167 (1952).Google Scholar
  21. Quay, W. B.: Circadian rhythm in rat pineal serotonin and its modifications by estrous cycle and photoperiod. Gen. Comp. Endocrinol. 3, 473–479 (1963).CrossRefGoogle Scholar
  22. Quay, W. B.: Reduction of mammalian pineal weight and lipid during continuous light. Gen. Comp. Endocrinol. 1, 211–217 (1961).CrossRefPubMedGoogle Scholar
  23. Quay, W. B.: Volumetric and cytological variation in the pineal body of Peromyscus leucopus (Rodentia) with respect to sex, captivity and day-length. J. Morphol. 98, 471–495 (1956).CrossRefGoogle Scholar
  24. Weissbach, H., Redfield, B. G., Axelrod, J.: Biosynthesis of melatonin: enzymatic conversion of serotonin to N-acetylserotonin. Biochim. Biophys. Acta 43, 352–353 (1960).CrossRefPubMedGoogle Scholar
  25. Wurtman, R. J., Axelrod, J.: The pineal gland. Sci. Am. 213, 50–60 (1965).CrossRefPubMedGoogle Scholar
  26. Wurtman, R. J., Axelrod, J., Chu, E. W.: Melatonin, a pineal substance: effect on the rat ovary. Science 141, 227–278 (1963).CrossRefGoogle Scholar
  27. Wurtman, R. J., Axelrod, J., Fischer, J. E.: Melatonin synthesis in the pineal gland: Effect of light mediated by the sympathetic nervous system. Science 143, 1328–1330 (1964).CrossRefGoogle Scholar
  28. Wurtman, R. J., Axelrod, J., Phillips, L. S.: Melatonin synthesis in the pineal gland: Control by light. Science 142, 1071–1073 (1963).CrossRefPubMedGoogle Scholar
  29. Wurtman, R. J., Roth, W., Altschule, M. D., Wurtman, J. J.: Interactions of the pineal and exposure to continuous light on organ weights of female rats. Acta Endocrinol. 36, 617–624 (1961).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 1978

Authors and Affiliations

  • G. C. Brainard
    • 1
  1. 1.Department of AnatomyGeorge Washington University, Medical CenterWashington, DCUSA

Personalised recommendations