Skip to main content

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 277))

Abstract

The aim of this course is twofold. First, the integral equations of linear acoustics are established for both interior and exterior problems. The integral representation of the diffracted field has several advantages: a/ the regularity theorems of the solution are easily obtained using the theories of “pseudo-differential operators” [1, 2] and “Poisson pseudo-kernels”[3, 4], b/ it is probably the most convenient formulation when no-local boundary conditions are involved; c/ numerical methods provide analytical approximations of the total field which are very useful for exterior problems (far-field diffraction patterns are easily obtained, constant level curves can be drawn,...). Another significant result (which is not established here) concerns the so-called “edge-conditions” which appear when the propagation domain has a non-regular boundary, or more, when the diffracting obstacle is an infinitely thin screen. Such boundaries or obstacles can be considered as the limit of a sequence of regular boundaries or no-zero thickness regular obstacles. It can be shown that the corresponding sequence of solutions has an unique limit which belongs to a functional space, the properties of which depend on the boundary irregularities. The edge conditions are included in the definition of this functional space. The fundamental ideas of the modern symbolic calculus of the pseudo-differential operators theory were already described in the book “Multidimensional singular integral equations” by S.G. MIKHLIN [5]. But the method used by this author is rather complicated, and the proofs must be established for each particular case. The recent theories are of a great generality and the basic results, useful in acoustics, are very simple.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. HORMANDER 1968 American Mathematical Society Proceedings of Symposia in Pure and Applied Mathematics 10, 138–183. Pseudo-differential and hypoelliptic equations.

    Article  Google Scholar 

  2. R. SEELEY 1969 in C.I.M.E., Pseudo-differential operators, Stresa, 26 Agosto3 Settembre. Rome: Edizzioni Cremonese, Topics in pseudo-differential operators.

    Google Scholar 

  3. L. BOUTETDEMONVEL 1966 Journal d’Analyse Mathématique, Jérusalem 17, 241–304. Comportement d’un opérateur pseudodifférentiel sur une variété à bord.

    Article  MathSciNet  Google Scholar 

  4. L. BOUTETDEMONVEL 1971 Acta Mathematica 126, 11–51. Boundary problems for pseudo-differential operators.

    Article  MathSciNet  Google Scholar 

  5. S.G. MIKHLIN 1965 Multidimensional Singular Integral Equations. Oxford: Pergamon Press.

    MATH  Google Scholar 

  6. L. SCHWARTZ 1966 Théorie des distributions. Paris: Hermann.

    MATH  Google Scholar 

  7. L. LANDAU and E. LIFCHITZ 1971 Mécanique des fluides. Moscow: Editions Mir.

    Google Scholar 

  8. I. VEKUA 1968 New Method for Solving Elliptic Equations. Amsterdam: North Holland Publishing Company, New York: John Wiley and Sons Inc.

    Google Scholar 

  9. B.R. VAINBERG 1966 Russian Mathematical Surveys 21, 115–193. Principles of radiation, limit absorption and limit amplitude in the general theory of partial differential equations.

    Article  ADS  MathSciNet  Google Scholar 

  10. C. H. WILCOX 1975 Lecture Notes in Mathematics: Scattering Theory for the d’Alembert Equation in Exterior Domains. Berlin-Heidelberg-New York: Springer Verlag.

    Google Scholar 

  11. P. FILIPPI 1979 Journal de Mécanique 18 (3) 565–591. Problème de transmission pour l’équation de Helmholtz scalaire et problèmes aux limites équivalents: application à la transmission gaz parfait - milieux poreux.

    ADS  MATH  MathSciNet  Google Scholar 

  12. M.N. SAYHI, Y. OUSSET and G. VERCHERY 1981 Journal of Sound and Vibration 74 (2), 187–204. Solutions of radiation problems by collocation of integral formulations in terms of single and double layer potentials.

    Article  ADS  MATH  Google Scholar 

  13. J.C. NEDELEC 1975 Ecole Polytechnique, Centre de Mathématiques Appliqués. Curve finite element methods for the solution of singular integral equation of surfaces in R3

    Google Scholar 

  14. Y. HAYASHI 1973 Journal of Mathematical Analysis and Applications 44, 489–530. The Dirichlet problem for the two-dimensional Helmholtz equation for an open boundary.

    Article  MATH  MathSciNet  Google Scholar 

  15. F. CASSOT and G. EXTREMET 1972 Acustica 27, 238–245. Détermination numérique du champ sonore et des fréquences propres dans une enceinte circulaire par la méthode de discrétisation.

    MATH  Google Scholar 

  16. M. ABRAMOVITCH and L.A. STEGUN 1970 Handbook of Mathematical Tables. Washinton, D.C.: National Bureau of Standards.

    Google Scholar 

  17. G. EXTREMET 1970 Acustica 23, 307–314. Propagation du son dans une enceinte fermée.

    MathSciNet  Google Scholar 

  18. CH. BOLOMEY and W. TABBARA 1971 Journées sur l’Application des potentiels de couches à la mécanique et à la diffraction, Centre de Recherches Physiques de Marseille (now L.M.A.), 2 november 1971, note n° 1218. Sur le couplage entre problèmes complémentaires pour l’équation des ondes.

    Google Scholar 

  19. CH. BOLOMEY and W. TABBARA 1973 Institution of Electrical Engineers Transactions AP21, 356–363. Numerical aspects of coupling between complementary boundary value problems.

    Google Scholar 

  20. H.A. SCHENCK 1968 Journal of the Acoustical Society of America, 44, 41–58. Improved integral formulation for acoustic radiation problems.

    Article  ADS  Google Scholar 

  21. P. FILIPPI and G. DUMERY 1969 Acustica 21, 343–350. Etude théorique et numérique de la diffraction par un écran mince.

    Google Scholar 

  22. F. CASSOT 1971 Thèse de spécialité en Acoustique, Marseille 29 octobre 1971. Contribution à l’étude de la diffraction par un écran mince. (See also Proceedings of the 7th International Congress on Acoustics, Budapest, 1971).

    Google Scholar 

  23. F. CASSOT 1975 Acustica 34, 64–71. Contribution à l’étude de la diffraction par un écran mince.

    MATH  Google Scholar 

  24. Z. MAEKAWA 1965 Mémoires of the Faculty of Engineering, Kobe University 11 (29). Noise reduction by screens.

    Google Scholar 

  25. A. DAUMAS 1978, Acustica 40 (4) 213–222. Etude de la diffraction par un écran mince disposé sur le sol.

    Google Scholar 

  26. M. SELVA 1977, Thèse de spécial-äté en Analyse Numérique, Université de Provence, Marseille. Sur une équation à noyau singulier issue de la théorie de la diffraction.

    Google Scholar 

Complementary Bibliography

  1. H. LEVINE and J. SCHWINGER 1948, Physical Review 74, 958–974. On the theory of diffraction by an aperture in an infinite plane screen, I.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. H. LEVINE and J. SCHWINGER 1949, Physical Review 75, 1423–1432. On the theory of diffraction by an aperture in an infinite plane screen, II.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. C. J. BOUWKAMP 1954 Reports on Progress in Physics 17, 35–100. Diffraction theory.

    Article  ADS  MathSciNet  Google Scholar 

  4. C. MIRANDA 1955 Equazioni alle derivate parziali di tipo ellitico. Berlin: Springer.

    Google Scholar 

  5. L.I. MUSHKHELISHVILI 1958 Singular Integral Equations. Groningen: P. Noordhoff N.V.

    Google Scholar 

  6. P. WERNER 1962 Archives of Rational Mechanics and Analysis 10, 29–66. Randwertprobleme der mathematischen Akustik.

    Article  ADS  MATH  Google Scholar 

  7. V.D. KUPRADZE 1965 Potential Methods in Theory of Elasticity. Jerusalem: Israel Program for Scientific Translations.

    MATH  Google Scholar 

  8. D. GREENSPAN 1966 Archives of Rational Mechanics and Analysis, 23, 288–316. A numerical methof for the exterior Dirichlet problem for the reduced wave equation.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. T.S. LUU, G. COULMY and J. CORNIGLION 1969 Association Technique Maritime et Aéronautrque (Paris). Technique des effets élémentaires dans la résolution des problèmes d’hydro-et d’aérodynamique.

    Google Scholar 

  10. G.F. ROACH 1970 Archives of Rational Mechanics and Analysis 36, 79–88. Approximate Green’s function and the solution of related integral equations.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. T.S. LUU, 1970 Association Technique Maritime et Aéronautique (Paris). Calcul de l’hélice marine subcavitante par la méthode de singularité.

    Google Scholar 

  12. T.S. LUU, G. COULMY and J. CORNIGLION 1971 Association Technique, Maritime et Aéronautique. Etude des écoulements instationnaires des aubes passantes par une théorie non linéaire.

    Google Scholar 

  13. T.S. LUU, G. COULMY and J. CORNIGLION 1971 Association Technique, Maritime et Aéronautique. Calcul non linéaire de l’écoulement à potentiel autour d’une aile d’envergure finie de forme arbitraire.

    Google Scholar 

  14. A.J. BURTON and G.F. MILLER 1971 Proceedings of the Royal Society, London, A323, 201–210. The application of integral equation methods to the numerical solution of some exterior boundary problems.

    ADS  MathSciNet  Google Scholar 

  15. J. VIVOLI 1972 Thèse, Marseille No.A.O. 7868. Vibrations des plaques et potentiels de couches.

    Google Scholar 

  16. D.S. JONES 1972 Journal of Sound and Vibration 20, 71–78. Diffraction theory: a brief introductory review.

    Article  ADS  MATH  Google Scholar 

  17. J. VIVOLI and P. FILIPPI 1974 Journal of the Acoustical Society of America 53, 562–567. Eigenfrequencies of thin plates and layer potentials.

    Google Scholar 

  18. D.S. JONES 1974 Quaterly Journal of Mechanics and Applied Mechanics XXVII, 129–142. Integral equations for the exterior acoustic problem.

    Google Scholar 

  19. R.E. KLEINMAN and G.F. ROACH 1974 SIAM Review 16, 214–236. Boundary integral equations for the three-dimensional Helmholtz equation.

    Article  MATH  MathSciNet  Google Scholar 

  20. J.C. NEDELEC 1976 Computational Methods in Applied Mechanics and Engineering 8, 61–80. Curved finite element methods for the solution of singular integral equations in R3.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. J. GIROIRE 1976 Ecole Polytechnique, Centre de Mathématiques Appliquées. Formulation variationnelle par équations intégrales droblèmes aux limites extérieurs.

    Google Scholar 

  22. L.M. DELVES and J. WALSH 1974 Numerical Solution of Integral Equations. Oxford: University Press.

    MATH  Google Scholar 

  23. R.E. KLEINMAN and W.L. WENDLAND 1977 Journal of Mathematical Analysis and Applications 57, (1), 170–20,. On Neumann’s method for the exterior Neumann problem for the Helmhcltz equation.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. G.C. HSIAO and W.L. WENDLAND 1977, Journal of Mathematical Analysis and Applications 58 (3), 449–481. A finite element method for some integral equations of the first kind.

    Article  MATH  MathSciNet  Google Scholar 

  25. G.C. HSIAO, P. KOPP and W.L. WENDLAND 1980, Computing 25, 89–130. A Galerkin collocation method for some integral equations of the first kind.

    Article  MATH  MathSciNet  Google Scholar 

  26. G.C. HSIAO and W.L. WENDALAND 1981, Jurnal of Integral Equations 3, 135–299. The Aubin-Nitsche lemma for integral equations.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Wien

About this chapter

Cite this chapter

Filippi, P.J.T. (1983). Integral Equations in Acoustics. In: Filippi, P. (eds) Theoretical Acoustics and Numerical Techniques. International Centre for Mechanical Sciences, vol 277. Springer, Vienna. https://doi.org/10.1007/978-3-7091-4340-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-4340-7_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-81786-5

  • Online ISBN: 978-3-7091-4340-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics