Skip to main content

Image fusion

  • Chapter

Abstract

In modern radiology imaging modalities for three-dimensional medical visualisation of anatomy and function are in clinical use. Various physical quantities measured by the interaction of e.g. X-rays, magnetic fields or ultra sound with the human body provide modality inherent information about the human body, in general information is complimentary.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borgefors G (1988) Hierarchical chamfer matching: A parametric edge matching algorithm. IEEE Trans Pattern Anal Machine Intel) 10: 849–865

    Article  Google Scholar 

  2. Collins DL, Peters TM, Dai W, Evans AC (1992) Model based segmentation of individual brain structures from MRI data. SPIE Proceedings of 1st International Conference on visualisation in Biomedical Computing 1808: 10–23

    Google Scholar 

  3. Collins DL (1994) 3D Model-based segmentation of individual brain structures from magnetic resonance imaging data. PhD thesis, McGill University

    Google Scholar 

  4. Dellepiane S, Fontana F (1995) Extraction of intensity connectedness for image processing. Pattern Recognition Letters 16: 313–324

    Article  Google Scholar 

  5. Gangolli AR, Tanimoto SL (1983) Two pyramid machine algorithms for edge detection in noisy binary images. Information Processing Letters 17: 197–202

    Article  Google Scholar 

  6. Gee JC, Reivich M, Bajcsy R (1993) Elastically deforming 3D atlas to match anatomical brain images. J Compt Assist Tomogr 17: 225–236

    Article  CAS  Google Scholar 

  7. Gibbs P, Buckley DL, Blackband SJ, Horsman A (1996) Tumour volume determination from MR images by morphological segmentation. Physics in Medicine and Biology 41: 2437–2446

    Article  PubMed  CAS  Google Scholar 

  8. Hata N (1998) Rigid and deformable medical image registration for image-guided surgery. PhD thesis, University of Tokyo

    Google Scholar 

  9. Hata N, Dohi T, Warfield S, Wells W, Kikinis R, Jolesz FA (1998) Multimodality deformable registration of pre-and intraoperative images for MRI guided brain surgery; http://splweb.bwh.harvard.edu:8000/pages/ papers/noby/m iccai 98/hatal 92. htm

    Google Scholar 

  10. Höhne KH, Hanson WA (1990) Interactive 3D-segmentation of MRI and CT volumes using morphological operators. J Compt Assist Tomogr 10: 41–53

    Google Scholar 

  11. Kaus M, Warfield S, Jolesz F, Kikinis R (1998) Adaptive template moderated brain tumor segmentation in MRI. Bildverarbeitung für die Medizin. Springer, pp 102–106

    Google Scholar 

  12. Levin D, Hu X, Tan KK, Galhotra S, Pelizzari CA et al (1989) The brain: Integrated three-dimensional display of MR and PET images. Radiology 172: 783–789

    Google Scholar 

  13. Maintz A, Viergever M (1998) A survey of medical image registration. Medical Image Analysis 2 (1): 136

    Article  Google Scholar 

  14. Mokhtarian, F Suomela R (1999) Curvature scale space for image point feature detection. Proceedings of the International Conference on Image Processing and its Applications, Manchester, UK 206–210

    Google Scholar 

  15. Nakajima S, Atsumi H, Kikinis R, Moriarty TM, Metcalf DC, Jolesz FA, Black P (1997) Use of cortical surface vessel registration for image-guided neurosurgery. Neurosurgery 40 (6): 1201–1210

    Article  PubMed  CAS  Google Scholar 

  16. Pal N, Pal S (1993) A review on image segmentation techniques. Pattern Recognition 26: 1277–1294

    Article  Google Scholar 

  17. Robb RA (1995) Three-dimensional biomedical imaging: Principles and practice, VCH, pp 183–188

    Google Scholar 

  18. Serra J (1982) Image analysis and mathematical morphology. Academic Press

    Google Scholar 

  19. Soltanian-Zadeh H, Windham JP, Chen F (1994) Automated contour extraction using a multi-scale approach, Proceedings IEEE Medical Imaging Conference, Norfolk, VA

    Google Scholar 

  20. Specht DF (1990) Probabilistic neural networks. Neural Networks 3: 109–118

    Article  Google Scholar 

  21. Szekely G, Kelemen A, Brechbuhler C, Gerig G, (1996) Segmentation of 2d and 3d objects from MRI volume data using constrained elastic deformations of flexible Fourier contour and surface models. Medical Image Analysis 1 (1): 19–34

    PubMed  CAS  Google Scholar 

  22. Vannier M, Butterfield R, Jordan D, Murphy W et al (1985) Multi-spectral analysis of magnetic resonance images. Radiology 154: 221–224

    PubMed  CAS  Google Scholar 

  23. Viola PA (1995) Alignment by Maximization of mutual information. Artificial Intelligence Laboratory. Massachusetts Institute of Technology, PhD thesis, Cambridge, MA pp 155

    Google Scholar 

  24. Viola PA, Wells III WM (1995) Alignment by maximization of mutual information. Fifth International Conference on Computer Vision, IEEE, Cambridge, MA 16–23

    Google Scholar 

  25. Warfield SK (1998) Real-time image segmentation for image-guided surgery, http://splweb.bwh.harvard.edu:8000/pages/papers/warfield/sc98/index.html

  26. Warfield S, Jolesz F, Kikinis R (1998) A high performance computing approach to the registration of medical imaging data. Parallel Computing 24: 11345–11368

    Article  Google Scholar 

  27. Wells WM, Viola P, Atsumi H, Nakajima S, Kikinis R (1996) Multi-modal volume registration by maximization of mutual information. Medical Image Analysis 1: 35–51

    Article  PubMed  Google Scholar 

  28. Wells Ill W, Kikinis R, Grimson W, Jolesz F (1996) Adaptive segmentation of MRI data. IEEE Transactions on Medical Imaging 15 (4): 429–442

    Article  PubMed  CAS  Google Scholar 

  29. Westin C, Kikinis R (1998) Tensor controlled local structure enhancement of CT images for bone segmentation. Medical Image Computing and Computer Assisted Intervention (MICCAI) 1205–1212

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Wien

About this chapter

Cite this chapter

Backfrieder, W., Hanel, R., Diemling, M., Lorang, T., Kettenbach, J., Imhof, H. (2001). Image fusion. In: Hruby, W. (eds) Digital (R)Evolution in Radiology. Springer, Vienna. https://doi.org/10.1007/978-3-7091-3707-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-3707-9_16

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-3709-3

  • Online ISBN: 978-3-7091-3707-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics