Skip to main content

Unorthodox Concepts

  • Chapter
Design of Digital Computers
  • 31 Accesses

Abstract

In prior chapters we were concerned with conventional digital computers. We have seen their building blocks and their concepts, and a number of variations in their implementation. Many development efforts aim at an improvement in their characteristics, such as reliability, cost, speed, size, and convenience of operation. Mostly they do not attempt to change the basic structure of the stored program computer. On the other hand, the layout of present day digital computers is not ideal, or at least not ideal for all applications. The structure of digital computers is perhaps still more determined by history than by a superior knowledge of conceivable structures. It would be presumptious to predict the structure of future co mputer systems. However, we can show a number of ideas concerned with unorthodox concepts. Whether or not these will find a wide practical application remains to be seen. In any event, a discussion of novel ideas should give us a more thorough understanding of present layouts and enable us to re-consider presently accepted concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Canaday R. H.: Two-Dimensional Iterative Logic, AFIPS Conference Proceedings, vol. 27, part 1, pp. 343–353. Fall Joint Computer Conference, 1965.

    Google Scholar 

  2. Minnik R. C.: Cutpoint Cellular Logic, Transactions IEEE, vol. EC-13, No. 6, pp. 685–698. Dec. 1963.

    Google Scholar 

  3. Minnik R. C.: Cobweb Cellular Arrays, AFIPS Conference Proceedings, vol. 27, part 1, pp. 327–341. Fall Joint Computer Conference, 1965.

    Google Scholar 

  4. Short R. A.: Two-Rail Cellular Cascades, AFIPS Conference Proceedings, vol. 27, part 1, pp. 355–369. Fall Joint Computer Conference, 1965.

    Google Scholar 

  5. Holland J. H.: An Iterative Circuit Computer, etc., Proceedings Western Joint Computer Conference, pp. 259–265. San Francisco. May 1960.

    Google Scholar 

  6. Comfort W. T.: A Modified Holland Machine, Proceedings Fall Joint Computer Conference, 1963.

    Google Scholar 

  7. Garner , and Squire : Iterative Circuit Computers, Workshop on Computer Organization. Washington: Spartan Books. 1963.

    Google Scholar 

  8. Gonzalez R.: A Multilayer Iterative Computer, Transactions IEEE, vol. EC-12, No. 5, pp. 781–790. Dec. 1963.

    MATH  Google Scholar 

  9. Slotnick, Bork, and Mcreynolds : The Solomon Computer, Proceedings Fall Joint Computer Conference, Philadelphia. Dec. 1962.

    Google Scholar 

  10. Knapp, and Turner : A Centrally Controlled Iterative Array Computer, Technical Documentary Report, Rome Air Development Center, Radctdr-64–251. July 1964.

    Google Scholar 

  11. Senzig , and Smith : Computer Organization for Array Processing, AFIPS Conference Proceedings, vol. 27, part 1, pp. 117–128. Fall Joint Computer Conference, 1965.

    Google Scholar 

  12. Hawkins, and Munsey : A Parallel Computer Organization and Mechanizations, Transactions IEEE, vol. EC-12, No. 3, pp. 251–262. June 1963.

    MATH  Google Scholar 

  13. Mccormick : The Illinois Pattern Recognition Computer, Transactions IEEE, vol. EC-12, No. 5, pp. 791–813. Dec. 1963.

    Google Scholar 

Polymorphic Computers

  • Porter R. E.: The RW 400 — A New Polymorphic Data System, Datamation, pp. 8–14. Jan./Feb. 1960.

    Google Scholar 

  • Estrin, Bussel, Turn, and Bibb: Parallel Processing in a Restructurable Computer System, Transactions IEEE, vol. EC-12, No. 5, pp. 747–755. Dec. 1963.

    Google Scholar 

Hybrid Computation

  • Burns M. C.: High-Speed Hybrid Computer, National Symposium on Telemetering, San Francisco. 1959.

    Google Scholar 

  • Connelly M. E.: Real-Time Analog Digital Computation, Transactions IRE, vol. EC-11, No. 1, p. 31. Feb. 1962.

    Article  Google Scholar 

  • Hagan T. G.: Ambilog Computers: Hybrid Machines for Measurement System Calculation Tasks, 17th Annual Conference, Instrument Society of America, New York. Oct. 1962.

    Google Scholar 

  • Schmid H.: An Operational Hybrid Computing System Provides Analog-Type Computations with Digital Elements, Transactions IEEE, vol. EC-12, No. 5, pp. 715–732. Dec. 1963.

    MATH  Google Scholar 

  • Truitt T. D.: Hybrid Computation, IEEE Spectrum, pp. 132–146. June 1964.

    Google Scholar 

  • Riordan, A and Morton A: The Use of Analog Techniques in Binary Arithmetic Units, Transactions IRE, vol. EC-14, No. 1, pp. 29–35. Feb. 1965.

    MATH  Google Scholar 

Digital Differential Analyzers

  • Forbes G. F.: Digital Differential Analyzers, 4th Edition, Private Print, 1957 (13745 Eldridge Ave, Sylmar, Cal.).

    MATH  Google Scholar 

  • Gschwind H. W.: Analyzers, in Electronic Computers, ed. by P. Von Handel. Vienna: Springer. Englewood Cliffs: Prentice Hall. 1961.

    Google Scholar 

  • Shileiko A. U.: Digital Differential Analyzers. New York: McMillan. 1964.

    Google Scholar 

Micro-Programmed Computers

  • Wilkes, and Stringer : Microprogramming and the Design of Control Circuits in Electronic Digital Computers, Proceedings Cambridge Phil. Soc., vol. 49, part 2, pp. 230–238. April 1953.

    Article  MathSciNet  MATH  Google Scholar 

  • Mercer R. J.: Micro-Programming, Journal ACM, vol. 4, pp. 157–171. Apr. 1957.

    Article  MathSciNet  Google Scholar 

  • Blankenbaker J. V.: Logically Micro-Programmed Computers, Transactions IRE, vol. EC-7, pp. 103–109. June 1958.

    Article  Google Scholar 

  • Wilkes M. V.: Micro-Programming, Proceedings Eastern Joint Computer Conference, pp. 18–20. Philadelphia. Dec. 1958.

    Google Scholar 

  • Kampe T. W.: The Design of a General-Purpose Microprogram Controlled Computer with Elementary Structure, Transactions IRE, vol. EC-9, pp. 208–213. June 1960.

    Google Scholar 

  • Grasselli A.: The Design of Program-Modifiable Micro-Programmed Control Units. Transactions Ire. vol. EC-11, No. 3, pp. 336–339. June 1962.

    MathSciNet  Google Scholar 

  • Gerace G. B.: Microprogrammed Control for Computing Systems, Transactions IEEE, vol. EC-12, No. 5, pp. 733–747. Dec. 1963.

    MATH  Google Scholar 

  • Brile Y. R. E.: Pico-Programming: A New Approach to Computer Control, AFIPS Conference Proceedings, vol. 27, part 1, pp. 93–98. Fall Joint Computer Conference, 1965.

    Google Scholar 

Machines with Cellular Organization

  • Unger S. H.: A Computer Oriented Toward Spatial Problems, Proceedings IRE, vol. 46, No. 4, p. 1744. Oct. 1958.

    Google Scholar 

  • Holland J. H.: A Universal Computer Capable of Executing an Arbitrary Number of Subprograms Simultaneously. Proceedings Eastern Joint Computer Conference, Boston. Dec. 1959.

    Google Scholar 

  • Stewart R. M.: Notes on the Structure of Logic Nets, Proceedings IRE, vol. 49, No. 8, pp. 1322–1323. Aug. 1961.

    Google Scholar 

  • Comfort W. T.: Highly Parallel Machines, Workshop on Computer Organization. Washington: Spartan Books. 1963.

    Google Scholar 

  • Gregory, and Reynolds : The Solomon Computer, Transactions IEEE, vol. EC-12, No. 5, pp. 774–775. Dec. 1963.

    MATH  Google Scholar 

  • Multiple Processing Techniques, Technical Documentary Report, Rome Air Development Center, RADC-TDR-64–186. June 1964.

    Google Scholar 

List Processors

  • Newell, Shaw, and Simon: Empirical Explorations of the Logic Theory Machine; A Case History in Heuristics, Proceedings. Western Joint Computer Conference, pp. 218–230. Feb. 1957.

    Google Scholar 

  • Green B. F.: Computer Languages for Symbol Manipulation, Transactions IRE, vol. EC-10, No. 4, pp. 729–735. Dec. 1961.

    Google Scholar 

  • Muth, and Scidmore : A Memory Organization for an Elementary List Processing Computer, Transactions IEEE, vol. EC-12, No. 3, pp. 262–265. June 1963.

    MATH  Google Scholar 

  • Prywes, and Litwin : The Multi-List Central Processor, Proceedings of the 1962 Workshop on Computer Organization, pp. 218–230. Washington: Spartan Books. 1963.

    Google Scholar 

  • Wigington R. L.: A Machine Organization for a General Purpose List Processor, Transactions IEEE, vol. EC-12, No. 5, pp. 707–714. Dec. 1963.

    MATH  Google Scholar 

Associative Computers

  • Rosin R. F.: An Organization of an Associative Cryogenic Computer, Proceedings Spring Joint Computer Conference, pp. 203–212. May 1962.

    Google Scholar 

  • Davies P. M.: Design for an Associative Computer, Proceedings Pacific Computer Conference, pp. 109–117. March 1963.

    Google Scholar 

  • Estrin, and Fuler : Algorithms for Content Addressable Memories, Proceedings Pacific Computer Conference, pp. 118–130. March 1963.

    Google Scholar 

  • Ewing, and Davies : An Associative Processor, Proceedings Fall Joint Computer Conference, pp. 147–158. Nov. 1964.

    Google Scholar 

  • Fuller, and Bird : An Associative Parallel Processor with Application to Picture Processing, Proceedings Fall Joint Computer Conference, pp. 105–116. 1965.

    Google Scholar 

Learning Structures

  • Rosenblatt F.: Perceptron Simulation Experiments, Proceedings IRE, vol. 48, No. 3, pp. 301–309. March 1960.

    Article  MathSciNet  Google Scholar 

  • Minsky M.: Steps Toward Artificial Intelligence, Proceedings IRE, vol. 49, No. 1, pp. 8–30. Jan. 1961.

    Article  MathSciNet  Google Scholar 

  • Hawkins J. K.: Self-Organizing Systems — A Review and Commentary, proceedings IRE, vol. 49, No. 1, pp. 31–48 Jan. 1961.

    Article  MathSciNet  Google Scholar 

  • Coleman P. D.: On Self-Organizing Systems, Proceedings IRE, vol. 49, No. 8, pp. 1317–1318. Aug. 1961.

    Google Scholar 

  • Highle Yman W. H.: Linear Decision Functions, with Application to Pattern Recognition, Proceedings IRE, vol. 50, No. 6, pp. 1501–1514. June 1962.

    MathSciNet  Google Scholar 

  • Simmons, and Simmons : The Simulation of Cognitive Processes, An Annotated Bibliography, Transactions IRE, vol. EC-11, No. 4, pp. 535–552. Aug. 1962.

    Google Scholar 

  • Crane H. D.: Neuristor — A Novel Device and System Concept, Proceedings IRE, vol. 50, No. 10, pp. 2048–2060. Oct. 1962.

    Article  Google Scholar 

  • Rosenblatt F.: Principles of Neurodynamics, Perceptrons, and the Theory of Brain Mechanisms. Washington: Spartan Books. 1962.

    MATH  Google Scholar 

  • Mattson, Firschein, and Fischler : An Experimental Investigation of a Class of Pattern Recognition Synthesis Algorithms, Transactions IEEE, vol. EC-12, No. 3, pp. 300–306. June 1963.

    Google Scholar 

  • Kazmierczak, and Steinbuch : Adaptive Systems in Pattern Recognition, Transactions IEEE, vol. EC-12, No. 5, pp. 822–835. Dec. 1963.

    MATH  Google Scholar 

  • Fukunaga, and ITO : A Design Theory of Recognition Functions in SelfOrganizing Systems, Transactions IEEE, vol. EC-14, No. 1, pp. 44–52. Feb. 1965.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1967 Springer-Verlag Wien

About this chapter

Cite this chapter

Gschwind, H.W. (1967). Unorthodox Concepts. In: Design of Digital Computers. Springer, Vienna. https://doi.org/10.1007/978-3-7091-3369-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-3369-9_9

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-3370-5

  • Online ISBN: 978-3-7091-3369-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics