Skip to main content

Changes in signal transduction in Alzheimer’s disease

  • Conference paper
Neurotransmitter and Dementia

Part of the book series: Journal of Neural Transmission ((NEURAL SUPPL,volume 30))

  • 46 Accesses

Summary

We studied the signal transduction system including the receptor and protein kinase C (PKC) in Alzheimer’s disease (AD) brains. We used 3H-TCP as a ligand for the NMDA receptor-ion channel complex. The total concentrations of 3H-TCP binding sites were significantly reduced in AD frontal cortex. 3H-TCP binding sites spared in AD brains retained the affinity for the ligand and the reactivity to NMDA, l-glutamate, and glycine. We utilized antibodies to assess the degree of involvement of different PKC isoforms in AD. The concentration of PKC (βII) was lower in AD particulate fractions and higher in AD cytosol fractions. Immunocytochemical studies revealed reduced numbers of anti-PKC (βII)-immunopositive neurons. Anti-PKC (α) faintly stained entire plaques and surrounding glial cells. Anti-PKC (βI) stained dystrophic plaque neurites. Anti-PKC (βII) stained the amyloid-containing portions of plaques. These results suggest an involvement of second messenger cascades in the pathogenesis of AD in addition to neurotransmitters and their receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ase K, Saitoh N, Shearman MS, Kikkawa U, Ono Y, Igarashi K, Tanaka C, Nishizuka Y (1988) Distinct cellular expression of βI- and ßII-subspecies of protein kinase C in rat cerebellum. J Neurosci 8:3850–3856

    PubMed  CAS  Google Scholar 

  • Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1: 623–634

    Article  PubMed  CAS  Google Scholar 

  • Cole G, Dobkins LA, Hansen LA, Terry RD, Saitoh T (1988) Decreased levels of protein kinase C in Alzheimer brain. Brain Res 452:165–170

    Article  PubMed  CAS  Google Scholar 

  • Cole G, Masliah E, Huynh TV, DeTeresa R, Terry RD, Okuda C, Saitoh T (1989) An antiserum against amyloid β-protein precursor detects a unique peptide in Alzheimer brain. Neurosci Lett 100:340–346

    Article  PubMed  CAS  Google Scholar 

  • Collingridge GL, Bliss TVP (1987) NMDA receptor — their role in long-term potentiation. TINS 10:288–293

    CAS  Google Scholar 

  • De Boni U, McLachlan DR (1985) Controlled induction of paired helical filaments of the Alzheimer type in cultured human neurons, by glutamate and aspartate. J Neurol Sci 68:105–118

    Article  PubMed  Google Scholar 

  • Foster AC, Wong EHF (1987) The novel anticonvulsant MK-801 binds to the activated state of the N-methyl-d-aspartate receptor in rat brain. Br J Pharmacol 91:403–409

    Article  PubMed  CAS  Google Scholar 

  • Gandy S, Czernik AN, Greengard P (1988) Phosphorylation of Alzheimer disease amyloid precursor peptide by protein kinase C and Ca2+/calmodulin-dependent protein kinase II. Proc Natl Acad Sci USA 85:6218–6221

    Article  PubMed  CAS  Google Scholar 

  • Geddes JW, Chang-Chui H, Cooper SM, Lott IT, Cotman CW (1986) Density and distribution of NMDA receptors in the human hippocampus in Alzheimer’s disease. Brain Res 399:156–161

    Article  PubMed  CAS  Google Scholar 

  • Green N, Alexander H, Olson A, Alexander S, Shinnick TM, Sutcliffe JG, Lerner RA (1982) Immunogenic structure of the influenza virus hemagglutinin. Cell 28: 477–487

    Article  PubMed  CAS  Google Scholar 

  • Greenamyre JT, Penney JB, D’Amato CJ, Young AB (1987) Dementia of the Alzheimer’s type: changes in hippocampal l-3H-glutamate binding. J Neurochem 48:543–551

    Article  PubMed  CAS  Google Scholar 

  • Huynh TV, Cole G, Katzman R, Huang K-P, Saitoh T (1989) Reduced PKC immunoreactivity and altered protein phosphorylation in Alzheimer’s disease fibroblasts. Arch Neurol 46:1195–1199

    Article  PubMed  Google Scholar 

  • Kemp JA, Foster AC, Wong HF (1987) Non-competitive antagonists of excitatory amino acid receptors. TINS 10:294–298

    CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Maragos WF, Chu DCM, Young AB, D’Amato CJ, Penney Jr B (1987) Loss of hippocampal 3H-TCP binding in Alzheimer’s disease. Neurosci Lett 74: 371–376

    Article  PubMed  CAS  Google Scholar 

  • Monaghan DT, Geddes JW, Yao D, Chung C, Cotman CW (1987) 3H-TCP binding sites in Alzheimer’s disease. Neurosci Lett 73:197–200

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka Y (1988) The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 334:661–665

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka Y (1989) Studies and prospectives of the protein kinase C family for cellular regulation. Cancer 63:1892–1903

    Article  PubMed  CAS  Google Scholar 

  • Ogita K, Yoneda Y (1988) Disclosure by Triton X-100 of NMDA-sensitive 3H-glutamate binding sites in brain synaptic membranes. Biochem Biophys Res Commun 153:510–517

    Article  PubMed  CAS  Google Scholar 

  • Ransom RW, Stec NL (1988) Cooperative modulation of 3H-MK-801 binding to the N-methyl-d-aspartate receptor-ion channel complex by l-glutamate, glycine, and polyamines. J Neurochem 51:830–836

    Article  PubMed  CAS  Google Scholar 

  • Rothman SM, Olney JW (1987) Excitotoxicity and the NMDA receptor. TINS 10:299–302

    CAS  Google Scholar 

  • Shimohama S, Taniguchi T, Fujiwara M, Kameyama M (1986 Changes in nicotinic and muscarinic cholinergic receptors in Alzheimer-type dementia. J Neurochem 46:288–293

    Article  PubMed  CAS  Google Scholar 

  • Shimohama S, Taniguchi T, Fujiwara M, Kameyama M (1986 b) Biochemical characterization of α-adrenergic receptors in human brain and changes in Alzheimer-type dementia. J Neurochem 47:1294–1301

    Article  CAS  Google Scholar 

  • Shimohama S, Taniguchi T, Fujiwara M, Kameyama M (1987) Changes in α-adrenergic receptor subtypes in Alzheimer-type dementia. J Neurochem 48:1215–1221

    Article  PubMed  CAS  Google Scholar 

  • Shimohama S, Taniguchi T, Fujiwara M, Kameyama M (1988) Changes in benzodiazepine receptors in Alzheimer-type dementia. Ann Neurol 23:404–406

    Article  PubMed  CAS  Google Scholar 

  • Shimohama S, Saitoh T, Gage FH (1988) Protein kinase C in hippocampus and septum following fimbria-fornix transection. Soc Neurosci Abstr 14:19

    Google Scholar 

  • Simpson MDC, Royston MC, Deakin JFW, Cross AJ, Mann DMA, Slater P (1988) Regional changes in 3H-d-aspartate and 3H-TCP binding sites in Alzheimer’s disease brains. Brain Res 462: 76–82

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

Shimohama, S. et al. (1990). Changes in signal transduction in Alzheimer’s disease. In: Gottfries, C.G., Nakamura, S. (eds) Neurotransmitter and Dementia. Journal of Neural Transmission, vol 30. Springer, Vienna. https://doi.org/10.1007/978-3-7091-3345-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-3345-3_7

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82190-9

  • Online ISBN: 978-3-7091-3345-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics