Skip to main content

Abstract

The term “flavin” stands for the yellow redox-active subgroup of the first coenzyme ever to be elucidated in terms of molecular structure. The “heroic” period of redox-enzymology of the early thirties ended in Hugo Theroell’s (172175) description of the first enzyme ever to be split reversibly to yield coenzyme and apoprotein. This was the NADPH-oxidizing “Old Yellow Enzyme” from yeast, whose biological function is still unknown even nowadays. The structure of the coenzyme has been shown to be riboflavin-5’-phosphate, viz. a phosphate derivative of vitamin B2, which had been synthesized somewhat earlier by Karrer’s group (83), who based this work upon even more important chemical precursor studies of Kuhn and coworkers (102, 100) and on the biochemical work of Warburg and Christian (188).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartsch, R. G.: Properties of c-Typ Cytochromes of Chromatium. Feder. Proc. 20, 43 (1961).

    Google Scholar 

  2. Bartsch, R. G., T. E. Meyer, and A. B. Robinson: Complex c-Typ Cytochromes with Bound Flavin. In: “Structure and Function of Cytochromes” (K. Okuni, M. C. D. Kamen, I. Sezuku, eds.), p. 443. Tokyo: University of Tokyo Press. 1968.

    Google Scholar 

  3. Beinert, H.: Spectral Characteristics of Flavins at the Semiquinoid Oxidation Level. J. Amer. Chem. Soc. 78, 5323 (1956).

    CAS  Google Scholar 

  4. Flavin Coenzymes. In: “The Enzymes” (P. D. Boyer, H. Lardy, K. MyrbÄCK, eds.), Vol. 2, 2nd ed., p. 339. New York: Academic Press. 1960.

    Google Scholar 

  5. Berezovskii, V. M., L. S. TulChinskaya, and N. A. Polyakova: Alloxazine and Isoalloxazine Derivatives. Xiii. Synthesis of 7-Aminoalloxazine, 7-Aminodimethylriboflavin, and their Derivatives. Zh. Obsh. Khim. 35, 673 (1965).

    CAS  Google Scholar 

  6. Berezovskii, V. M., L. S. TulChinskaya, and N. A. PolyakovaReactivities of Alloxazines and Isoalloxazines. Russ. Chem. Rev. 41, 574 (1972).

    Google Scholar 

  7. Blankenhorn, G.: Flavin-Nicotinamide Biscoenzymes: Models for the Interaction between Nadh (Nadph) and Flavin in Flavoenzymes. Eur. J. Biochem. 50, 351 (1975).

    CAS  Google Scholar 

  8. Blankenhorn, G., and P. Hemmerich: Unpublished Results.

    Google Scholar 

  9. Boukine, V. N.: Compounds of Soluble Vitamins with Proteins in Fats. In: Resumés de Communications, 3ème Congres International de Biochimie, Bruxelles, p. 61 (1955).

    Google Scholar 

  10. Brohmller, M., and K. Decker: Covalently Bound Flavin in D-6-Hydroxynicotine Oxidase from Arthrobacter oxidans. Amino-Acid Sequence of the Fad-Peptide. Eur. J. Biochem. 37, 256 (1973).

    Google Scholar 

  11. BRÜHMÜLler, M., H. Mohler, and K. Decker: Covalently Bound Flavin in D-6Hydroxynicotine Oxidase from Arthrobacter oxidans. Purification and Properties of D-6-Hydroxynicotine Oxidase. Eur. J. Biochem. 29, 143 (1972).

    Google Scholar 

  12. Bruice, T. C.: Models and Flavin Catalysis. Submitted to “Progress in Bioorganic Chemistry” (E. T. Kaiser, F. J. Kezdy, eds.). New York: Wiley.

    Google Scholar 

  13. BRÜStlein, M., W.-R. Knappe und P. Hemmerich: Neue Photoalkylierungsreaktionen am Flavinkern. Angew. Chem. 83, 854 (1971).

    Google Scholar 

  14. Bullock, F. I., and O. Jardetzky:An Experimental Demonstration of the Nuclear Magnetic Resonance Assignments in the 6,7-Dimethylalloxazine Nucleus. J. Org. Chem. 30, 2056 (1965).

    CAS  Google Scholar 

  15. Cairns, W. L., and D. E. Metzler: Photochemical Degradation of Flavins. VI. A New Photoproduct and Its Use in Studying the Photolytic Mechanism. J. Amer. Chem. Soc. 93, 2772 (1971).

    CAS  Google Scholar 

  16. Carr, D. O., and D. E. Metzler: The Oxidation of Ethyl-1,2-Dihydro-2-naphtoate by Flavins and its Stimulation by Light. Biochem. Biophys. Acta 205, 63 (1970).

    CAS  Google Scholar 

  17. Checcucci, A., G. Colombetti, G. Del Carratore, R. Ferrara, and F. Lenci: Red Light-Induced Accumulation of Euglena gracilis. Photochem. Photobiol. 19, 223 (1974).

    CAS  Google Scholar 

  18. Chi, T. F., Y. L. Wang, C. L. TsOu, Y. C. Wang, and C. H. Yu: Scientia Sinica 14, 1193 (1965).

    CAS  Google Scholar 

  19. Draper, R. D., and L. L. Ingraham: A Potentiometric Study of the Flavin Semiquinone Equilibrium. Arch. Biochem. Biophys. 125, 802 (1968).

    CAS  Google Scholar 

  20. Drysdale, G. R., M. J. Spiegel, and P. J. Strittmatter: Flavoprotein-catalyzed direct Hydrogen Transfer between Pyridine Nucleotides. J. Biol. Chem. 236, 2323 (1961).

    CAS  Google Scholar 

  21. Dudley, K. H., A. Ehrenberg, P. Hemmerich und F. MÜÜLler: Spektren und Strukturen der am Flavin-Redoxsystem beteiligten Partikeln. Studien in der Flavinreihe IX. Helv. Chim. Acta 47, 1354 (1964).

    CAS  Google Scholar 

  22. Dudley, K. H. und P. Hemmerich: Stabile Dihydroflavine und quartare Flaviniumsalze. Studien in der Flavinreihe, 12. Mitt. Helv. Chim. Acta 50, 355 (1967).

    CAS  Google Scholar 

  23. Dudley, K. H. und P. Hemmerich Flavins Xiii. Rearrangement Reactions of 1,3,10-Trialkylflavinium Salts. J. Org. Chem. 32, 3049 (1967).

    Google Scholar 

  24. Edmondson, D. E.: Intramolecular Hemiacetal Formation in 8-Formylriboflavine. Biochemistry 13, 2817 (1974).

    CAS  Google Scholar 

  25. Edmondson, D. E.. and T. P. Singer: Oxidation-Reduction Properties of the 8α-Substituted Flavins. J. Biol. Chem. 248, 8144 (1973).

    CAS  Google Scholar 

  26. Ehrenberg, A., F. Muller, and P. Hemmerich: Basicity, Visible Spectra and Electron Spin Resonance of Flavosemiquinone Anions. Eur. J. Biochem. 2, 286 (1967).

    CAS  Google Scholar 

  27. Eisele, R.: Ph. D. Thesis, University of Konstanz (1974).

    Google Scholar 

  28. Eley, M., J. Lee, J. M. Lhoste, C. Y. Lee, M. J. Cormier, and P. Hemmerich: Bacterial Bioluminescence. Comparisons of Bioluminescence Emission Spectra, the Fluorescence of Luciferase Reaction Mixtures, and the Fluorescence of Flavin Cations. Biochemistry 9, 2902 (1970).

    CAS  Google Scholar 

  29. Entsch, B., D. P. Ballou, and V. Massey: The Role of Oxygenated Flavins in the Catalytic Reaction of p-Hydroxy-Benzoate Hydroxylase. In: “Flavins and Flavoproteins” (T. P. Singer, ed.). Amsterdam: Elsevier, in press.

    Google Scholar 

  30. Erwin, V. G., and L. Hellerman: Mitochondrial Monamino Oxidase. I. Purification and Characterisation of the Bovine Kidney Enzyme. J. Biol. Chem. 242, 4230 (1967).

    CAS  Google Scholar 

  31. Faraggi, M., P. Hemmerich, and I. Pecht: O2-Affinity of Flavin Radical Species as Studied by Pulse Radiolysis. Febs-Lett. 51, 47 (1975).

    CAS  Google Scholar 

  32. Favaudon, V., and J.-M. Lhoste: The Kinetics of Flavine Oxidation-Reduction I. Biochemistry 14, 4734 (1975).

    Google Scholar 

  33. Fenner, H., H. H. Roessler, and H. J. Duchstein: Structure and Reactivity of 5-Deazaflavins. In: “Flavins and Flavoproteins” (T. P. Singer, ed.). In Press.

    Google Scholar 

  34. Forrest, H. S., C. Van Baalen, M. Viscontini und M. Piraux: Reaktion von CN mit hydriertem 2-Amino-6-hydroxy-pteridin. Helv. Chim. Acta 43, 1005 (1960).

    CAS  Google Scholar 

  35. Rster, T.: Elektrolytische Dissoziation angeregter Moleküle. Z. Elektrochem. 54, 42 (1950).

    Google Scholar 

  36. Frisell, W. R., C. W. Chung, and C. G. Mackenzie: Catalysis of Oxidation of Nitrogen Compounds by Flavin Coenzymes in the Presence of Light. J. Biol. Chem. 234, 1297 (1959).

    CAS  Google Scholar 

  37. Frisell, W. R., and C. G. Mackenzie: Separation and Purification of Sarcosine Dehydrogenase and Dimethylglycine Dehydrogenase. J. Biol. Chem. 237, 94 (1962).

    CAS  Google Scholar 

  38. FRÖHlich, O., and B. Diehn: Photoeffects in a Flavin-containing Lipid Bilayer Membrane and Implications for Algal Phototaxis. Nature 248, 802 (1974).

    Google Scholar 

  39. Rtner, B., und P. Hemmerich: Zur Propargylaminhemmung der Monoaminooxidase: Struktur des Inhibitor-Komplexes. Angew. Chem. 87, 137 (1975).

    Google Scholar 

  40. Gerstner, E. und E. Pfeil: Zur Kenntnis des Flavinenzyms Hydroxynitril-Lyase (D-Oxynitrilase). Hoppe-Seyler’s Z. Physiol. Chem. 353, 271 (1972).

    CAS  Google Scholar 

  41. Ghisla, S.: Personal Communication.

    Google Scholar 

  42. Ghisla, S., U. Hartmann und P. Hemmerich: Die Synthese des SuccinatDehydrogenase-Riboflavins. Angew. Chem. 82, 669 (1970).

    Google Scholar 

  43. Ghisla, S., U. Hartmann, P. Hemmerich und F. Muller: Die reduktive Alkylierung des Flavinkerns, Struktur und Reaktivitat von Dihydroflavinen. Xviii Mitt. Liebigs Ann. Chem. 1973, 1388.

    Google Scholar 

  44. Ghisla, S., and P. Hemmerich: Synthesis of the Flavocoenzyme of Monoamine Oxidase. Febs-Lett. 16, 229 (1971).

    CAS  Google Scholar 

  45. Ghisla, S., and P. Hemmerich Unpublished observations.

    Google Scholar 

  46. Ghisla, S., V. Massey, J.-M. Lhoste, and S. G. Mayhew: Fluorescence and Optical Characteristics of Reduced Flavins and Flavoproteins. Biochemistry 13, 589 (1974).

    CAS  Google Scholar 

  47. Ghisla, S., V. Massey, and S. G. Mayhew: Studies on the Active Centers of Flavoproteins; Binding of 8-Hydroxy-Fad and 8-Hydroxy-Fmn to Apoproteins. In: “Flavins and Flavoproteins” (T. P. Singer, ed.). Amsterdam: Elsevier, in press.

    Google Scholar 

  48. Ghisla, S., and S. G. Mayhew: Identification and Structure of a Novel Flavin Prosthetic Group Associated with Reduced Nicotinamide Adenine Dinucleotide from Peptostreptococcus elsdenii. J. Biol. Chem. 248, 6568 (1973).

    CAS  Google Scholar 

  49. Ghisla, S., and S. G. Mayhew Eur. J. Biochem., in press.

    Google Scholar 

  50. Gibson, Q. H., and J. W. Hastings: The Oxidation of Reduced Flavin Mononucleotide by Molecular Oxygen. Biochem. J. 83, 368 (1962).

    CAS  Google Scholar 

  51. Gladys, M. und W.-R. Knappe: Photochemie des (Iso)Alloxazins Iii. Intramolekulare Photodealkylierung von 10-Alkylisoalloxazinen, eine Modellreaktion für den Riboflavinphotoabbau. Chem. Ber. 107, 3658 (1974).

    CAS  Google Scholar 

  52. Green, O. E., S. Mii, and P. M. Kohout: Studies on the Terminal Electron Transport System. I. Succinic Dehydrogenase. J. Biol. Chem. 217, 551 (1955).

    CAS  Google Scholar 

  53. Haas, W., and P. Hemmerich: pH-Dependence, Isotope Effects and Products of Flavinsensitized Photodecarboxylation and Photodehydrogenation. Z. Naturforsch. 27b, 1035 (1972).

    CAS  Google Scholar 

  54. Hall, R. L., B. Vennesland, and F. J. KÉZdy: Glyoxylate Carboligase of Escherichia coli. J. Biol. Chem. 244, 3991 (1969).

    CAS  Google Scholar 

  55. Hamilton, G. A.: The Proton in Biological Redox Reactions. In: “Progress in Bioorganic Chemistry” (E. T. Kaiser, F. J. KÉzDY, eds.), Vol. 1, p. 83. New York: Wiley. 1971.

    Google Scholar 

  56. Harbury, H. A., K. F. LA Noue, P. A. Loach, and R. M. Amick: Molecular Interaction of Isoalloxazine Derivatives II. Proc. Nat. Acad. Sci. Usa 45, 1708 (1959).

    CAS  Google Scholar 

  57. Hastings, J. W., et al.: Several Papers. In: “Flavins and Flavoproteins” (T. P. Singer, ed.). Amsterdam: Elsevier, in press.

    Google Scholar 

  58. Hastings, J. W., C. Balny, C. Lepeuch, and P. DouzOu: Spectral Properties of an Oxygenated Luciferase - Flavin Intermediate Isolated by Low-Temperature Chromatography. Proc. Natl. Acad. Sci. U.S.A. 70, 3468 (1973).

    CAS  Google Scholar 

  59. Hastings, J. W., and Q. H. Gibson: Intermediates in the Bioluminescent Oxidation of Reduced Flavin Mononucleotide. J. Biol. Chem. 238, 2537 (1963).

    CAS  Google Scholar 

  60. Heizmann, C., P. Hemmerich, R. Mengel, and W. Pfleiderer: Pteridine Synthesis from Riboflavin and other Isoalloxazines. In: “Chemistry and Biology of Pteridines” (K. IwAO, M. Akino, M. Goto, Y. Jwanami, eds.), p. 105. Tokyo: Int. Acad. Printing Co. Ltd. 1970.

    Google Scholar 

  61. Hemmerich, P.: Studien in der Lumiflavin-Reihe Viii. Die Kondensation von 8-Methyl-isoalloxazinen mit Aldehyden. Helv. Chim. Acta 43, 1942 (1960).

    CAS  Google Scholar 

  62. Hemmerich, P. ie Koordinationschemie der Flavokoenzyme und die Bedeutung der NichtHam-Metallionen in der Atmungskette. In: ,,Mechanismen enzymatischer Reaktionen“ (14. Colloquium der Gesellschaft für Physiologische Chemie, Mosbach/Baden 1963). Berlin-GÖttingen-Heidelberg-New York: Springer. 1964.

    Google Scholar 

  63. Hemmerich, P. lavosemichinon-Metallchelate: Modelle zur Erklärung der ,,active site“ in mitochondrialen Flavoenzymen. Zum Verhalten des Riboflavins gegen Metallionen Iii. Helv. Chim. Acta 47, 464 (1964).

    Google Scholar 

  64. Hemmerich, P. ree Radicals of Biological Interest as Studied by Esr. Proc. Roy. Soc. A302, 335 (1968).

    Google Scholar 

  65. Hemmerich, P.Discussion remark. In: “Flavins and Flavoproteins” (H. Kamin, ed.), p. 52. Baltimore: University Park Press. 1971.

    Google Scholar 

  66. Hemmerich, P., A. P. Bhaduri, G. Blankenhorn, M. Brustlein, W. Haas, and W.-R. Knappe: Model Studies towards Demonstration of Covalent 2e--Transfer Intermediates and Their Structure in Flavin Dependent CH- and O2-Activation. In: “Oxidases and Related Redox Systems“ (T. E. King, H. S. Mason, M. Morrison, eds.), p. 3. Baltimore: University Park Press. 1973.

    Google Scholar 

  67. Hemmerich, P., A. Ehrenberg, W. H. Walker, L. E. G. Eriksson, J. Salach, P. Bader, and T. P. Singer: On the Structure of Succinate Dehydrogenase Flavocoenzyme. Febs-Lett. 3, 37 (1969).

    CAS  Google Scholar 

  68. Hemmerich, P., and W. Haas: Recent Developments in the Study of “Fully Reduced Flavin”. In: “Reactivity of Flavins” (K. Yagi, ed.). Tokyo: University Press, 1975.

    Google Scholar 

  69. Hemmerich, P., and W.-R. Knappe: Flavin-Dependent Substrate Dehydrogenation; Model Studies and Mechanisms. In: “Structure and Function of Oxidation Reduction Enzymes” (A. Akeson, A. Ehrenberg, eds.), p. 367. Oxford: Pergamon Press. 1971.

    Google Scholar 

  70. Hemmerich, P., and J. Lauterwein: The Structure and Reactivity of Flavin-Metal Complexes. In: “Inorganic Biochemistry” (G. Eichhorn, ed.), Vol. 2, p. 1168, Amsterdam: Elsevier. 1973.

    Google Scholar 

  71. Hemmerich, P., V. Massey, and G. Weber: Photo-Induced Benzyl Substitution of Flavins by Phenylacetate: A Possible Model for Flavoprotein Catalysis. Nature 213, 728 (1967).

    CAS  Google Scholar 

  72. Hemmerich, P., and F. MÜLler: Flavin-O2-Interaction Mechanism and the Function of Flavin in Hydroxylation Reactions. Ann. N. Y. Acad. Sci. 212, 13 (1973).

    CAS  Google Scholar 

  73. Hemmerich, P., F. MÜLler, and A. Ehrenberg: The Chemistry of Flavin-Metal Interaction. In: “Oxidases and Related Redox Systems” (T. E. King, H. S. Mason, M. Morrison, eds.), p. 157. New York: Wiley. 1965.

    Google Scholar 

  74. Hemmerich, P., G. Nagelschneider, and C. Veeger: Chemistry and Molecular Biology of Flavins and Flavoproteins. Febs-Lett. 8, 69 (1970).

    CAS  Google Scholar 

  75. Hemmerich, P., B. Prus, and H. Erlenmeyer: Synthesen in der Lumiflavinreihe IV. Helv. Chim. Acta 42, 1604 (1959).

    CAS  Google Scholar 

  76. Hemmerich, P., B. Prus, and H. Erlenmeyer tudien in der Lumiflavinreihe V. Spezifische Reaktivitat 8-standiger Substituenten am Isoalloxazinkern; Flavin-Dimere. Helv. Chim. Acta 42, 2164 (1959).

    Google Scholar 

  77. Hemmerich, P., B. Prus, and H. Erlenmeyer tudien in der Lumiflavinreihe VI. Alkylierungs- und Desalkylierungsreaktionen an (Iso)alloxazinen; 1,3,10Trimethylflavosemichinone. Helv. Chim. Acta 43, 372 (1960).

    Google Scholar 

  78. Hemmerich, P., and M. Schuman-Jorns: Mechanisms of Hydrogen Transfer in Redox Enzymes. In: “Enzymes: Structure and Function” (J. Drenth, R. A. Oosterbaan, C. Veeger, eds.), p. 95. Amsterdam: North Holland Pub. Corp. 1972.

    Google Scholar 

  79. Hemmerich, P., C. Veeger und H. C. S. WooD: Fortschritte in der Chemie und Molekularbiologie der Flavine und Flavocoenzyme. Angew. Chem. 77, 699 (1965).

    CAS  Google Scholar 

  80. Hemmerich, P., and A. Wessiak: The Structural Chemistry of Flavin Dependent O2-Activation. In: “Flavins and Flavoproteins” (T. P. Singer, ed.). Amsterdam: Elsevier, in press.

    Google Scholar 

  81. Igaue, I., B. Gomes, and K. T. Yasunobu: Beef Mitochondrial Monoamine Oxidase, a Flavin Dinucleotide Enzyme. Biochem. Biophys. Res. Commun. 29, 562 (1967).

    CAS  Google Scholar 

  82. Kamin, H., ed.: Flavins and Flavoproteins. Baltimore: University Park Press. 1971.

    Google Scholar 

  83. Karrer, P., K. Schopp und F. Benz: Synthesen von Flavinen IV. Helv. Chim. Acta 18, 426 (1935).

    CAS  Google Scholar 

  84. Kearney, E. B.: Studies on Succinic Dehydrogenase Xii. Flavin Component of the Mammalian Enzyme. J. Biol. Chem. 235, 865 (1960).

    CAS  Google Scholar 

  85. Kearney, E. B., J. I. Salach, W. H. Walker, R. L. Seng, W. Kenney, E. Zeszotek, and T. P. Singer: The Covalently-Bound Flavin of Hepatic Monoamino Oxidase. I. Isolation and Sequence of a Flavin Peptide and Evidence for Binding at the 8α-Position. Eur. J. Biochem. 24, 321 (1971).

    CAS  Google Scholar 

  86. Kearney, E. B., J. I. Salach, W. H. Walker, R. Seng, and T. P. Singer: Structure of the Covalently Bound Flavin of Monoamine Oxidase. Biochem. Biophys. Res. Commun. 42, 490 (1971).

    CAS  Google Scholar 

  87. Kearney, E. B., and T. P. Singer: On the Prosthetic Group of Succinic Dehydrogenase. Biochem. Biophys. Acta 17, 596 (1955).

    CAS  Google Scholar 

  88. Kenney, W. C., D. E. Edmondson, and T. P. Singer: A Novel Form of Covalently Bound Flavin from Thiamine Dehydrogenase. Biochem. Biophys. Res. Commun. 57, 106 (1974).

    CAS  Google Scholar 

  89. Kenney, W. C., D. E. Edmondson, and T. P. Singer he Covalently Bound Flavin of Chromatium Cytochrome c552. 2. Sequence of Flavin Peptides and Flavin-Tyrosine Interaction. Eur. J. Biochem. 48, 449 (1974).

    Google Scholar 

  90. Kenney, W. C., and W. H. Walker: Synthesis and Properties of 8α-Substituted Riboflavins of Biological Importance. Febs-Lett. 20, 297 (1972).

    CAS  Google Scholar 

  91. Kenney, W. C., W. H. Walker, E. B. Kearney, E. Zeszotek, and T. P. Singer: Amino Acid Sequence at the Active Center of Succinate Dehydrogenase. Biochem. Biophys. Res. Commun. 41, 488 (1970).

    CAS  Google Scholar 

  92. Kenney, W. C., W. H. Walker, and T. P. Singer: Studies on Succinate Dehydrogenase XX. Amino Acid Sequence around the Flavin Site. J. Biol. Chem. 247, 4510 (1972).

    CAS  Google Scholar 

  93. Kierkegaard, P., R. Norrestam, P. Werner, I. CSÖRegh, M. Glehn, R. Karlsson, M. Leijonmarck, O. Ronnquist, B. Stennesland, O. Tillberg, and L. TorbjÖRnssON: X-Ray Structure Investigations of Flavin Derivatives. In: “Flavines and Flavoproteins” (H. Kamin, ed.), p. 1. Baltimore: University Park Press. 1971.

    Google Scholar 

  94. King, T. E., and J. W. Clark-Lewis: The Structures of Some Supposed Azetid-2:4- diones. Part Iii. The “Alloxan-5-o-dimethylaminoanil” of Rudy and Cramer, and its Alkali Hydrolysis Product. J. Chem. Soc. 1951, 3080.

    Google Scholar 

  95. Klaui, W.: Untersuchungen über den Einfluß koordinativ gebundener Übergangs metalle auf Reaktionen von ungesattigten Carbocyclen in Übergangsmetall-Komplexen. Ph. D. Thesis, University of Zürich: 1975.

    Google Scholar 

  96. Klopman, G.: Chemical Reactivity and the Concept of Charge and FrontierControlled Reactions. J. Amer. Chem. Soc. 90, 223 (1968).

    CAS  Google Scholar 

  97. Knappe, W.-R.: Photochemie des 10-Phenylisoalloxazins. Intramolekulare Singulettund intermolekulare Triplett-Reaktionen. Chem. Ber. 107, 1614 (1974).

    CAS  Google Scholar 

  98. Knappe, W.-R., and P. Hemmerich: Covalent Intermediates in Flavin-sensitizcd Photodehydrogenation and Photodecarboxylation. Z. Naturforsch. 27b, 1032 (1972).

    CAS  Google Scholar 

  99. Kosower, E. M.: Molecular Biochemistry, p. 166. New York: McGraw-Hill. 1962.

    Google Scholar 

  100. Kuhn, R., K. Rfinemund, and F. Weygand: Synthese des Lumi-lactoflavins. Ber. 67, 1460 (1934).

    Google Scholar 

  101. Kuhn, R. und R. Strobele: Über Verdo-, Chloro- und Rhodoflavine. Ber. 70, 753 (1937).

    Google Scholar 

  102. Kuhn, R., and T. Wagner-Jauregg: Uber die aus Eiklar und Milch isolierten Flavine. Ber. 66, 1577 (1933).

    Google Scholar 

  103. Kuhn, R., and F. Weygand: Synthese des 9-Methyl-isoalloxazins. Berg. 67, 1409 (1934).

    Google Scholar 

  104. Lambooy, J. P.: The Alloxazines and Isoalloxazines. In: “Heterocyclic Compounds” (R. C. Elderfield, ed.). Vol. 9. p. 118. N. Y. 1967.

    Google Scholar 

  105. Land, E. J., and A. J. Swallow: One-Electron Reactions in Biochemical Systems as Studied by Pulse Radiolysis 1. Nicotinamide — Adenine Dinucleotide and Related Compounds. Biochim. Biophys. Acta 162, 327 (1968).

    CAS  Google Scholar 

  106. Larrabee, R. B.: Fluxional Main Group IV Organometallic Compounds. The Implications for Orbital Symmetry Rules. J. Organomet. Chem. 74, 313 (1974).

    CAS  Google Scholar 

  107. Lasser, N., and I. Feitelson: Excited State pK-Values from Fluorescence Measurements. J. Phys. Chem. 77, 1011 (1973).

    CAS  Google Scholar 

  108. Louie, D. D., and N. Kaplan: Stereospecifity of Hydrogen Transfer Reaction of Pseudomonas aeruginosa Pyridine Nucleotide Transhydrogenase. J. Biol. Chem. 245, 5691 (1970).

    CAS  Google Scholar 

  109. Ludwig, M., R. M. Burnett, G. D. Darling, S. R. Jordan, D. S. Kendall, and W. W. Smith: The Structure of Clostridium MP. Flavodoxin as a Function of Oxidation State: Some Comparisons. In: “Flavins and Flavoproteins” (T. P. Singer, ed.). Amsterdam: Elsevier, in press.

    Google Scholar 

  110. Mager, H. I. X.: Nonenzymic Activation and Transfer of Oxygen by Reduced Alloxazine. In: “Flavins and Flavoproteins” (T. P. Singer, ed.). Amsterdam: Elsevier, in press.

    Google Scholar 

  111. Mager, H. I. X., and W. Berends: Hydroperoxides of Partially Reduced Quinoxalines, Pteridines and (Iso)alloxazines: Intermediates in Oxidation Processes. Rec. Trav. Chim. 84, 1329 (1965).

    CAS  Google Scholar 

  112. Mager, H. I. X., and W. Berends The Structure of Transient Hydroperoxides in the Autoxidation of Reduced Flavins. Biochem. Biophys. Acta 118, 440 (1966).

    Google Scholar 

  113. Mager, H. I. X., and W. Berends Activation and Transfer of Oxygen. V. Spontaneous Oxidation of 1,3,10-trimethyl-5,10-dihydroalloxazine in Acidic Media in Connection with its Hydroxylating Ability. Rec. Trav. Chim. 911, 611 (1972).

    Google Scholar 

  114. Mager, H. I. X., and W. Berends Activation and Transfer of Oxygen. VI. The Influence of Hydrochloric Acid on the Autoxidation of Dihydroalloxazines. Rec. Trav. Chim. 91, 630 (1972).

    Google Scholar 

  115. Mager, H. I. X., and W. Berends Activation and Transfer of Oxygen. IX. Nonenzymic Hydroxylation of Phenylalanine by Model Systems of Dihydroalloxazine/O2, Dihydroalloxazine/H2O2 and Alloxazinium Cation/H2O2. Tetrahedron 30, 917 (1974).

    Google Scholar 

  116. Massey, V.: Unpublished.

    Google Scholar 

  117. Massey, V., and B. Curti: A New Method of Preparation of D-Amino Acid Oxidase Apoprotein and a Conformational Change after its Combination with Flavin Adenin Dinucleotide. J. Biol. Chem. 241, 3417 (1966).

    CAS  Google Scholar 

  118. Massey, V., and S. Ghisla: Role of Charge-Transfer Interactions in Flavoprotein Catalysis. Ann. N. Y. Acad. Sci. 227, 446 (1974).

    Google Scholar 

  119. Massey, V., S. Ghisla, D. Ballou, C. T. Walsh, Y. F. Cheng, and R. H. Abeles: Rapid Reaction Studies on Dehydrogenation and Elimination Reactions of D-Amino Acid Oxidase and Lactate Oxidase. In: “Flavins and Flavoproteins” (T. P. Singer, ed.). Amsterdam: Elsevier, in press.

    Google Scholar 

  120. Massey, V., and P. Hemmerich: Flavine and Pteridine Monooxygenases. In: “The Enzymes” (P. D. Boyer, ed.), 3rd ed., Volume Xii B, 191. N. Y.: Academic Press. 1976.

    Google Scholar 

  121. Massey, V., F. MÜLler, R. Feldberg, M. Schuman, P. A. Sullivan, L. G. Howell, S. G. Mayhew, and R. H. Matthews: The Reactivity of Flavoproteins with Sulfite. Possible Relevance to the Problem of Oxygen Reactivity. J. Biol. Chem. 244, 3999 (1969).

    CAS  Google Scholar 

  122. Massey, V., G. Palmer, and D. Ballou: On the Reaction of Reduced Flavins with Molecular Oxygen. In: “Oxidases and Related Redox Systems” (T. E. King, H. S. Mason, and M. Morrison, eds.), Vol. I, p. 25. Baltimore: University Park Press. 1973.

    Google Scholar 

  123. Mayhew, S. G.: Studies of Flavin Binding in Flavodoxins. Biochem. Biophys. Acta 235, 289 (1971).

    CAS  Google Scholar 

  124. Mayhew, S. G., G. P. Foust, and V. Massey: Oxidation-Reduction Properties of Flavodoxin from Peptostreptococcus elsdenii. J. Biol. Chem. 244, 803 (1969).

    CAS  Google Scholar 

  125. Mayhew, S. G., and V. Massey: Evidence for a Novel Flavin Prosthetic Group Associated with Nadh Dehydrogenase from Peptostreptococcus elsdenii. Biochim. Biophys. Acta 235, 303 (1971).

    CAS  Google Scholar 

  126. Mayhew, S. G., C. D. Whitfield, S. Ghisla, and M. Schuman-Jorns: Identification and Properties of New Flavins in Electron Transferring Flavoprotein from Peptostreptococcus elsdenii and Pig-Liver Glycolate Oxidase. Eur. J. Biochem. 44, 579 (1974).

    CAS  Google Scholar 

  127. Mccapra, F., and D. W. Hysert: Bacterial Bioluminescence. Identification of Fatty acid as Product, its Quantum Yield, and a Suggested Mechanism. Biochem. Biophys. Res. Comm. 52, 298 (1973).

    CAS  Google Scholar 

  128. Michaelis, L., M. P. Schubert, and C. V. Smythe: Potentiometric Study of the Flavins. J. Biol. Chem. 116, 587 (1936).

    CAS  Google Scholar 

  129. Michaelis, L., and G. Schwarzenbach: The Intermediate Forms of OxidationReduction of the Flavins. J. Biol. Chem. 123, 527 (1938).

    CAS  Google Scholar 

  130. Miura, R., K. Matsui, K. Hirotsu, A. Shimada, M. Takatsu, and S. Otani: X-Ray Crystallographic Determination of a Derivative of a New Flavin Compound, Roseoflavin. J. Chem. Soc. Chem. Commun. 1973, 703.

    Google Scholar 

  131. Mohler, H., M. BruhmÜLler, and K. Decker: Covalently Bound Flavin in D-6-Hydroxynicotine Oxidase from Arthrobacter oxidans. Identification of the 8α-(N-3-Histidyl)-riboflavin-Linkage between Fad and Apoenzyme. Eur. J. Biochem. 29, 152 (1972).

    CAS  Google Scholar 

  132. Morris, J. R., H. L. Crespi, and J. J. Katz: Characterization of a new Photo-Esr Signal Assotiated with Photosynthesis. Biochem. Biophys. Res. Commun. 49, 139 (1972).

    Google Scholar 

  133. Moller, F.: On the Reaction of Flavins with Alcohols. In: “Flavins and Flavoproteins” (H. Kamin, ed.), p. 363. Baltimore: University Park Press. 1971.

    Google Scholar 

  134. Moller, F.In: “Flavins and Flavoproteins” (T. P. Singer, ed.). Amsterdam: Elsevier, in press.

    Google Scholar 

  135. Moller, F., P. Hemmerich, and A. Ehrenberg: Esr-Spectra of Flavin Radical Cations. In Preparation.

    Google Scholar 

  136. Muller, F., P. Hemmerich, A. Ehrenberg, G. Palmer, and V. Massey: The Chemical and Electronic Structure of the Neutral Flavin Radical as Revealed by Electron Spin Resonance Spectroscopy of Chemically and Isotopically Substituted Derivatives. Eur. J. Biochem. 14, 185 (1970).

    CAS  Google Scholar 

  137. Muller, F., V. Massey, G. Heizmann, P. Hemmerich, J. M. Lhoste, and D. C. Gould: The Reduction of Flavins by Borohydride: 3,4-Dihydroflavin Structure, Absorption and Luminescence. Eur. J. Biochem. 9, 392 (1969).

    CAS  Google Scholar 

  138. Neal, R. A.: Bacterial Metabolism of Thiamine Iii. Metabolism of Thiamine to 3-(2’-Methyl-4’-Amino-5’-Pyrimidyl methyl)-4-Meth yl-thiazole-5-acetic Acid (Thiamine Acetic Acid) by a Flavoprotein isolated from a soil Microorganism. J. Biol. Chem. 245, 2599 (1970).

    CAS  Google Scholar 

  139. Neumoller, O.-A., ed.: Römpps Chemie-Lexikon. Stuttgart: Franck’sche Verlagshandlung. 1973.

    Google Scholar 

  140. Nicoli, M. Z., and J. W. Hastings: Bacterial Luciferase. The Hydrophobic Environment of the Reactive Sulfhydryl. J. Biol. Chem. 249, 2393 (1974).

    CAS  Google Scholar 

  141. NIcoLI, M. Z., E. M. Meighen, and J. W. Hastings: Bacterial Luciferase. Chemistry of the Reactive Sulfhydryl. J. Biol. Chem. 249, 2385 (1974).

    Google Scholar 

  142. O’Brien, D. E., L. T. Weinstock, and C. C. Cheng: Synthesis of 10-Deazariboflavin and Related 2,4-Dioxopyrimido (4,5-b) quinolines. J. Heterocycl. Chem. 7, 99 (1970).

    Google Scholar 

  143. Patek, D. R., C. R. Dahl, and W. R. Frisell: Isolation of Acid-Nonextractable Flavins from a Bacterial Sarcosine Oxidase. Biochem. Biophys. Res. Commun. 46, 885 (1972).

    CAS  Google Scholar 

  144. Patek, D. R., and W. R. Frisell: Purification and Characterisation of the Flavin Prosthetic Group of Sarcosine Dehydrogenase. Arch. Biochem. Biophys. 150, 347 (1972).

    CAS  Google Scholar 

  145. Pearson, W. N.: Riboflavin. In: “The Vitamins” (P. Gyorgy, W. N. Pearson, eds.), Vol. Vii, p. 99. N. Y.: Academic Press. 1967.

    Google Scholar 

  146. Penzer, G. R., and G. K. Radda: The Chemistry and Biological Function of Isoalloxazines (Flavins). Quart Rev. 21, 43 (1967).

    CAS  Google Scholar 

  147. Penzer, G. R., and G. K. Radda: The Chemistry of Flavins and Flavoproteins. Photoreduction of Flavins by Amino Acids. Biochem. J. 109, 259 (1968).

    CAS  Google Scholar 

  148. Penzer, G. R., and G. K. Radda Photochemistry of Flavins. In: “Vitamins and Coenzymes” (D. B. Mccormick, L. D. Wright, eds.), Vol. Xviii of “Methods in Enzymology”, p. 479. N. Y.: Academic Press. 1971.

    Google Scholar 

  149. Piloty, O., and K. Finckh: Über die Harnsauregruppe. Liebigs Ann. Chem. 333, 37 (1904).

    Google Scholar 

  150. Plaut, G. W. E.: Water-Soluble Vitamins, Part II. Riboflavin and Folic Acid. Ann. Rev. Biochem. 30, 409 (1961).

    CAS  Google Scholar 

  151. Poff, K. L., and W. L. Butler: Absorbance Changes induced by Blue Light in Phycomyces blakesleeanus and Dietyostelium discoideum. Nature 248, 799 (1974).

    CAS  Google Scholar 

  152. Polyakova, N. A., L. S. TulChinskaya, L. G. Zapesochnaya, and V. M. Berezovskii: Alloxazines and Isoalloxazines Xxxi. Synthesis of Hydroxy Analogs of Natural Flavines. Zhur. Obsh. Khim. 42, 465 (1972).

    CAS  Google Scholar 

  153. Rivlin, R. S., ed.: Riboflavin. N. Y.: Plenum Press. 1975.

    Google Scholar 

  154. Salach, J., W. H. Walker, T. P. Singer, A. Ehrenberg, P. Hemmerich, S. Ghisla, and U. Hartmann: Studies on Succinate Dehydrogenase. Site of Attachment of the Covalently-Bound Flavin to the Peptide Chain. Eur. J. Biochem. 26, 267 (1972).

    CAS  Google Scholar 

  155. Schabort, I. C., and D. J. J. Potgieter: β-Cyclopiazonate Oxidocyclase from Pennicillum Cyclopium. II. Studies on Electron Acceptors, Inhibitors, Enzyme Kinetics, Amino Acid Composition, Flavin Prosthetic Group and other Properties. Biochim. Biophys. Acta 250, 329 (1971).

    CAS  Google Scholar 

  156. SchÖLlnhammer, G., W. Haas, and P. Hemmerich: Unpublished.

    Google Scholar 

  157. SchÖLlnhammer, G., and P. Hemmerich: Unpublished.

    Google Scholar 

  158. SchÖLlnhammer, G., and P. Hemmerich Nucleophilic Addition at the Photoexcited Flavin Cation: Synthesis and Properties of 6- and 9-Hydroxy-Flavocoenzyme Chromophores. Eur. J. Biochem. 44, 561 (1974).

    Google Scholar 

  159. Schonbrunn, A., C. Walsh, S. Ghisla, H. Ogata, V. Massey, and R. Abeles: The Structure of the Flavin Inhibitor Adduct from Lactate Oxidase. In: “Flavins and Flavoproteins” (T. P. Singer, ed.). Amsterdam: Elsevier, in press.

    Google Scholar 

  160. Schreiner, S., U. Steiner, and H. E. A. Kramer: Determination of the pK Values of the Lumiflavin Triplet State by Flash Photolysis. Photochem. Photobiol. 21, 81 (1975).

    CAS  Google Scholar 

  161. Schuman-Jorns, M., G. SchÖLlnhammer, and P. Hemmerich: Intramolecular Addition of the Riboflavin Side Chain: Anion Catalyzed Neutral Photochemistry. Eur. J. Biochem. 57, 35 (1975).

    Google Scholar 

  162. Siegel, L. M., H. Kamin, D. C. Rueger, R. P. Presswood, and O. H. Gibson: An Iron-Free Sulfite Reductase Flavoprotein from Mutants of Salmonella tryphimurium. In: “Flavins and Flavoproteins” (H. Kamin, ed.), p. 523. Baltimore: University Park Press. 1971.

    Google Scholar 

  163. Singer, T. P., ed.: Flavins and Flavoproteins. Amsterdam: Elsevier, in press.

    Google Scholar 

  164. Singer, T. P., and D. E. Edmondson: 8α-Substituted Flavins of Biological Importance. Febs-Lett. 42, 1 (1974).

    CAS  Google Scholar 

  165. Singer, T. P., E. B. Kearney, and V. Massey: Observations on the Flavin Moiety of Succinate Dehydrogenase. Arch. Biochem. Biophys. 60, 255 (1956).

    CAS  Google Scholar 

  166. Singer, T. P., and W. C. Kenney: To be published.

    Google Scholar 

  167. Slater, E. C., ed.: Flavins and Flavoproteins. Amsterdam: Elsevier. 1966.

    Google Scholar 

  168. Smith, S. B., M. Brustlein, and T. C. Bruice: Electrophilicity of the 8-Position of the Isoalloxazine (Flavine) Ring System. Comment on the Mechanism of Oxidation of Dihydroalloxazine. J. Amer. Chem. Soc. 96, 3696 (1974).

    CAS  Google Scholar 

  169. Song, P.-S.: On the Basicity of the Excited State of Flavins. Photochem. Photobiol. 7, 311 (1968).

    CAS  Google Scholar 

  170. Sun, M., T. A. Moore, and P.-S. Song: Molecular Luminescence Studies of Flavins. I. The Excited States of Flavins. J. Amer. Chem. Soc. 94, 1730 (1972).

    CAS  Google Scholar 

  171. Tauscher, L., S. Ghisla, and P. Hemmerich: Nmr-Study of Nitrogen-Inversion and Conformation of 1,5-Dihydro-Isoalloxazines (Reduced Flavins). Helv. Chim. Acta 56, 630 (1973).

    CAS  Google Scholar 

  172. Theorell, H.: Reindarstellung (Kristallisation) des gelben Atmungsferments und die reversible Spaltung desselben. Biochem. Z. 272, 155 (1934).

    CAS  Google Scholar 

  173. Theorell, H. Über die Wirkungsgruppe des gelben Ferments. Biochem. Z. 275, 37 (1935).

    Google Scholar 

  174. Theorell, H. Reindarstellung der Wirkungsgruppe des gelben Ferments. Biochem. Z. 275, 344 (1935).

    Google Scholar 

  175. Theorell, H. Das gelbe Oxydationsferment. Biochem. Z. 278, 263 (1935).

    Google Scholar 

  176. Tishler, M., K. Pfister, R. D. Babson, K. Ladenburg, and A. J. Flaming: The Reaction between o-Aminoazo Compounds and Barbituric Acid. A New Synthesis of Riboflavin. J. Amer. Chem. Soc. 69, 1487 (1947).

    CAS  Google Scholar 

  177. Tulchinskaya, L. S., N. A. Polyakova, and V. M. Berezovskii: Alloxazine and Isoalloxazine Compounds Xxvi. Azo Coupling of 7-Amino and 7-Hydroxyalloxazines. Zh. Obsh. Khim. 40, 1859 (1970).

    CAS  Google Scholar 

  178. Vainshtein, F. M., E. I. Kukhtenko, E. I. Tomilenko, and E. A. Shilov: Nucleophilic Replacement of the Sulfonato Group in Aromatic Compounds with the Participation of Oxidizing Agents. Zh. Org. Khim. 3, 1654 (1967).

    CAS  Google Scholar 

  179. Vaish, S. P., and G. Tollin: Flash Photolysis of Flavins. V. Oxidation and Disproportionation of Flavin Radicals. Bioenergetics 2, 61 (1971).

    CAS  Google Scholar 

  180. Walaas, E., and O. Walaas: Kinetics and Equilibria in Flavoprotein Systems. V. The Effects of pH, Anions and Partial Structural Analogues of the Coenzyme on the Activity of D-Amino Acid Oxidase. Acta Chem. Scand. 10, 122 (1956).

    CAS  Google Scholar 

  181. Walker, W. H., P. Hemmerich, and V. Massey: Reductive Photoalkylierung des Flavinkerns und flavin-katalysierte Photodecarboxylierung von Phenylacetat. Studien in der Flavinreihe XV. Helv. Chim. Acta 50, 2269 (1967).

    CAS  Google Scholar 

  182. Walker, W. H., P. Hemmerich, and V. Massey Light-Induced Alkylation and Dealkylation of the Flavin Nucleus. Stable Dihydroflavins: Spectral Course and Mechanism of Formation. Eur. J. Biochem. 13, 258 (1970).

    Google Scholar 

  183. Walker, W. H., E. B. Kearney, R. L. Seng, and T. P. Singer: Sequence and Structure of a Cysteinyl Flavin Peptide from Monamine Oxidase. Biochem. Biophys. Res. Commun. 44, 287 (1971).

    CAS  Google Scholar 

  184. Walker, W. H., P. Hemmerich, and V. MasseyThe Covalently-Bound Flavin of Hepatic Monamine Oxidase. 2. Identification and Properties of Cysteinyl Riboflavin. Eur. J. Biochem. 24, 328 (1971).

    Google Scholar 

  185. Walker, W. H., W. C. Kenney, D. E. Edmondson, T. P. Singer, J. R. Cronin, and R. Hendriks: The Covalently Bound Flavin of Chromatium Cytochrome c552. 1. Evidence for Cysteine Thiohemiacetal at the 8α-Position. Eur. J. Biochem. 48, 439 (1974).

    CAS  Google Scholar 

  186. Walker, W. H., T. P. Singer, S. Ghisla, and P. Hemmerich: Studies on Succinate Dehydrogenase. 8α-Histidyl-Fad as the Active Center of Succinate Dehydrogenase. Eur. J. Biochem. 26, 279 (1972).

    CAS  Google Scholar 

  187. Walsh, T., A. Schonbrunn, and R. H. Abeles: Studies on the Mechanism of Action of D-Amino Acid Oxidase. Evidence for Removal of Substrate a-Hydrogen as a Proton. J. Biol. Chem. 246, 6855 (1971).

    CAS  Google Scholar 

  188. Warburg, O., and W. Christian: Über das gelbe Ferment und seine Wirkungen. Biochem. Z. 266, 377 (1933).

    CAS  Google Scholar 

  189. Warburg, O., and W. Christian Das Coferment der d-Alanin Oxidase. Biochem. Z. 296, 294 (1938).

    Google Scholar 

  190. Warburg, O., and W. Christian Isolierung der prosthetischen Gruppe der d-Aminosäureoxidase. Biochem. Z. 298, 150 (1938).

    Google Scholar 

  191. Warburg, O., and W. Christian Bemerkung über gelbe Fermente. Biochem. Z. 298, 368 (1938).

    Google Scholar 

  192. Weatherby, G. D., and D. O. Carr: Riboflavin-Catalyzed Photooxidative Decarboxylation of Dihydrophtalates. Biochemistry 9, 344 (1970).

    CAS  Google Scholar 

  193. Weber, G.: Fluorescence of Riboflavin and Flavin-Adenin-Dinucleotide. Biochem. J. 47, 114 (1950).

    CAS  Google Scholar 

  194. Weygand, F., R. LÖWenfeld, and E. F. MÖLler: Über die Spezifität von 6.7-Dichlor9-d-ribo-flavin als Antagonist des Lactoflavins. Chem. Ber. 84, 101 (1951).

    CAS  Google Scholar 

  195. Whitby, L. G.: A New Method for Preparing Flavin Adenine Dinucleotide. Biochem. J. 54, 437 (1953).

    CAS  Google Scholar 

  196. White, E. H., J. D. Miano, C. J. Watkins, and E. J. Breaux: Chemisch erzeugte angeregte Zustände. Angew. Chem. 86, 292 (1974).

    CAS  Google Scholar 

  197. Yagi, K., ed.: Flavins and Flavoproteins. Tokyo: University of Tokyo Press. 1968.

    Google Scholar 

  198. Yang, C. S.: Photosensitized Conversion of Ethionine to Ethylene by Flavin Mononucleotide. Photochem. Photobiol. 12, 419 (1970).

    CAS  Google Scholar 

  199. Yang, C. S., and P. Hemmerich: Unpublished.

    Google Scholar 

  200. Yang, C. S., and D. Mccormick: The Photochemical Degradation of Flavins as Influenced by the Length and Extent of Hydroxylation of the Side Chain. J. Amer. Chem. Soc. 87, 5763 (1965).

    CAS  Google Scholar 

  201. Yokoe, I., and T. C. Bruice: Oxidation of Thiophenyl and Nitroalkanes by an Electron Deficient Isoalloxazine. J. Amer. Chem. Soc. 97, 450 (1975).

    CAS  Google Scholar 

  202. Zeitschrift für Naturforschung: 27b, Heft 9 (1972).

    Google Scholar 

  203. Zeller, E. A., B. Gartner, and P. Hemmerich: 4a,5-Cycloaddition Reactions of Acetylenic Compounds at the Flavoquinone Nucleus as Mechanisms of Flavoprotein inhibitors. Z. Naturforsch. 27b, 1050 (1972).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer-Verlag Wien

About this chapter

Cite this chapter

Hemmerich, P. (1976). The Present Status of Flavin and Flavocoenzyme Chemistry. In: Herz, W., Grisebach, H., Kirby, G.W. (eds) Fortschritte der Chemie Organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products. Fortschritte der Chemie Organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products, vol 33. Springer, Vienna. https://doi.org/10.1007/978-3-7091-3262-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-3262-3_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-3264-7

  • Online ISBN: 978-3-7091-3262-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics