Skip to main content

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 77))

Abstract

In current theories of plasticity, to explain the observed discontinuities in material behavior upon loading beyond the “yield point” and upon unloading, one has to introduce the concept of a yield surface in stress space as well as a “loading function” to distinguish between loading and unloading. Similarly, in the case of viscoplasticity, the existence of a static stress-strain relation and a yield surface are assumed and the stress increment, with respect to the static value, is related to the strain rate, or more generally to the strain history, by a constitutive equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ilyushin A. A., “On the relation between stresses and small deformations in the mechanics of continuous media,” Prikl. Math. Mech., 18, 641, (1954).

    Google Scholar 

  2. Rivlin R. S., “Nonlinear viscoelastic solids,” SIAM Review 7, 323, (1965).

    Article  MathSciNet  Google Scholar 

  3. Schapery, R. A., “On a thermodynamic constitutive theory and its application to various non-linear materials,” Proceedings, IUTAM Symposium, East Kilbride, 259, (1968).

    Google Scholar 

  4. Valanis, K. C., “A unified theory of thermomechanical behavior of viscoelastic materials,” Mechanical Behavior of Materials Under Dynamic Loads, Ed. U.S. Lindholm, Springer-Verlag, N. Y. (1968).

    Google Scholar 

  5. Valanis, K. C. “Thermodynamics of large viscrelastic deformations, J. Math and Phys., 45, 197, (1966).

    MATH  Google Scholar 

  6. Naghdi, P. M., Essenburgh, F. and Koff, W., “An experimental study of initial and subsequent yield surfaces in plasticity,” J. App. Mech., 25, 201, (1958).

    Google Scholar 

  7. Ivey, H. J., “Plastic stress-strain relations and yield surfaces for aluminum alloys, ” J. Mech. Eng. Sc., 3, 15, (1961).

    Article  Google Scholar 

  8. Mair W. M. and Pugh, H. L. 1. D., “Effect of prestrain on yield surfaces in copper, ” J. Mech. Eng. Sc., 6, 150 (1964).

    Article  Google Scholar 

  9. Szczepinski, W. and Miastkowski, J., “An experimental study of the pre-straining history on the yield surfaces of an aluminum alloy, ” J. Mech. ph. Sol. 16, 153, (1968).

    Article  Google Scholar 

  10. Szczepinski, W. “On the effect of plastic deformation on the yield condition,” Bulletin de l’académie polonaise des sciences, Série des sciences techniques, 11, 463, (1963).

    Google Scholar 

  11. Bertsch, P. K. and Findley, W. N., “An experimental study of subsequent yield surfaces, normality, Bauschinger and allied effects,” Proc. 4th U. S. Congr. App Mech., Berkley (1962).

    Google Scholar 

  12. Hu, L. W. and Bratt, J. F., J. App. Mech. 25, 441 (1958).

    Google Scholar 

  13. Batdorf, S.F. and Budianski, B., “Polyaxial stress-strain relations of strain-hardening metals,” J. App. Mech., 21, 323, (1954).

    Google Scholar 

  14. Prager, W., “The Theory of plasticity: a survey of recent achievements Proc. Inst. Mech. Eng., 169, 42, (1955).

    MathSciNet  Google Scholar 

  15. Eisenberg, M. A. and Phillips, A., “On nonlinear kinematic hardening.” Acta Machanica, 5, 1, (1968).

    Article  MATH  Google Scholar 

  16. Hodge, P.G., J. App. Mech., Trans. AMer. Soc. Mech. Eng. 79, 482 (1957).

    Google Scholar 

  17. Miastkowski J. and Szczepinski W., “An experimental study of yield surfaces of prestrained brass,” Int. J. Solids Structures, 1, 189, (1965).

    Article  Google Scholar 

  18. Naghdi P. M. and Rowley J. C., “An experimental study of biaxial stress-strain relations in plasticity,” J. Mech. Phys. Solids, 3, 63, (1954).

    Article  Google Scholar 

  19. Shield T. R. and Ziegler H., “On Prager’s hardening rule,” Zamp, 9, 260, (1958).

    Article  MathSciNet  Google Scholar 

  20. Bell, J. F., “Single, Temperature-dependent stress-strain law for the dynamic plastic deformation of annealed F. C. C. metals,” J. App. Phys., 34, 134, (1963).

    Article  Google Scholar 

  21. Rosen A. and Bodner, S. R., “The influence of strain rate and strain aging on the flow stress of commercially pur alluminum,” J. Mech. Ph. Solids 15, 47, (1967).

    Article  Google Scholar 

  22. Manjoine, M. J., “Influence of rate of strain and temperature on yield stresses of mild steel,” Trans. ASME, 66, A211, (1944).

    Google Scholar 

  23. Hanser F. E., Simmons J. A. and Dorn J. E., “Strain rate effects in plastic wave propagation,” University of California MRL publication, Series 133, Issue 3, (1960).

    Google Scholar 

  24. Marsh K.J. and Campbell J. D., “The effect of strain rate on the post yield flow of mild steel,” J. Mech. Phys. Solids, 11, 49, (1963).

    Article  Google Scholar 

  25. Chidister J. L. and Malvern, L. E., “Compression-impact testing of alumi num at elevated temperatures,” Exp. Mech. 3. 81. (1963).

    Article  Google Scholar 

  26. Lindholm, U. S’. S’, “Some experiments with the split Hopkinson bar, ” J. Mech. Phys. Solids, 12, 317, (1964).

    Article  Google Scholar 

  27. Lindholm, U. S. and Yeakley, L. M., “Dynamic deformation of single and polycrystalline aluminum,” J. Mech.Phys.Solids, 13, 41, (1965).

    Article  Google Scholar 

  28. Lindholm, U. S., “Some experiments in dynamic plasticity under combined stress,” Symposium on Mechnaical Behavior of Materials under Dynamic Loads, San Antonio, Texas (1967).

    Google Scholar 

  29. Krafft, J. M., Sullivan, A. M. and Tripper, C. F., “The effect of static and dynamic loading and temperature on the yield stress of iron and mild steel in compression,” Proc. Royal Soc. Land. A 221, 114, (1954).

    Google Scholar 

  30. Larsen, T. L. et Als, “Plastic stress/strain-rate/temperature relations in H. C. P. Ag-Al under impact loading,” J. Mech. Ph. Solids, 12, 361, (1964).

    Article  Google Scholar 

  31. Malvern, L. E., “Plastic wave propagation in a bar of material exhibiting a strain rate effect,” Q. App. Math. 8, 405, (1950).

    MathSciNet  Google Scholar 

  32. Malvern, L. E., “The propagation of longitudinal waves of plastic deformation in a bar of material exhibiting a strain rate effect,” J. App. Mech. 18, 203, (1951).

    MathSciNet  Google Scholar 

  33. Lubliner, J. “A generalized theory of strain rate dependent plastic wave propagation in bars,” J. Mech. Ph. Solids, 12, 59, (1964).

    Article  MATH  MathSciNet  Google Scholar 

  34. Perzyna, P., “On the thermodynamic foundations of viscoplasticity,” Symposium on the mechanical behavior of materials under dymic loads, San Antonio, Texas (1967).

    Google Scholar 

  35. Perzyna, P. and Wojno, W., “Thermodynamics of rate sensitive plastic material,” Arch. Mech. Stos. 20, (1968).

    Google Scholar 

  36. Perzyna, P. and Wojno, W., “Thermodynamics of a rate sensitive plastic material,” Arch. Mech. Stos. 5, 500, (1968).

    Google Scholar 

  37. Trozera, T. A., Sherby, O. D. and Dorn, J. E., “Effect of strain rate and temperature on the plastic deformation of high purity aluminum,” Trans. ASME, 49, 173, (1957).

    Google Scholar 

  38. Eddington J. W., “Effect of Strain rate on the Dislocation Substructure in Materials under Dynamic Loads, Ed. V. S. Lindholm, Springer-Verlag, N. Y. (1968).

    Google Scholar 

  39. Perzyna, P., “On Physical Foundations of Viscoplasticity,” Polskiej Akademii Nauk, IBTP Report 28/1968.

    Google Scholar 

  40. Peters, R. W. et Als, “Preliminary for testing basic assumptions of plasticity theories,” Proc. Soc. Exp. Stress Anal. 7, 27, (1949).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer-Verlag Wien

About this chapter

Cite this chapter

Valanis, K.C. (1971). General Theory. In: Irreversible Thermodynamics of Continuous Media. International Centre for Mechanical Sciences, vol 77. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2987-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2987-6_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-81127-6

  • Online ISBN: 978-3-7091-2987-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics