Skip to main content

Composite Programming as an Extension of Compromise Programming

  • Chapter
Mathematics of Multi Objective Optimization

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 289))

Abstract

Cost-effective control alternatives are selected by composite programming /an extension of compromise programming/ in order to find a trade-off among objectives or groups of criteria usually facing watershed management or observation network design: economic criteria /agricultural revenue and investment/, environmental criteria /yields of sediment and nutrient/, and hydrologic criteria /water yield/. Composite programming provides a two-level tradeoff analysis: first with different-L-norms within the criteria, then again with a different L norm among the three objectives.

An example of six interconnected watersheds draining into a multipurpose /water supply and recreation/ reservoir and a network design problem of aquifer parameters illustrate the methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zeleny, M., Compromise Programming in Multiple Criteria Decision Making, M.K. Starr and M. Zeleny eds., Univ. of South Carolina Press, 101, 1973

    Google Scholar 

  2. Gershon, M.E., Model Choice in Multiobjective Decision Making in Water and Mineral Resource Systems, Technical Reports, The University of Arizona, Tucson, Arizona, 85721, 155, 1981.

    Google Scholar 

  3. BogArdi, I. and A. Bardossy, Network design for the spatial estimation of environmental variables, Applied Math. and Comput, 12, 339, 1983.

    Article  MATH  Google Scholar 

  4. Miller, W.L. and D.M. Byers, Development and display of multiple objective projects impacts,,Water Resour. Res., 9 /4/, 11, 1973.

    Google Scholar 

  5. Das, P. and Y.Y. Haimes, Multiobjective optimization in water quality and land management, Water Resour. Res.

    Google Scholar 

  6. /, 1313, 1979.

    Google Scholar 

  7. Boga.rdi, I., David, L. and L. Duckstein, Trade-off between cost and effectiveness of control of nutrient loading into a waterbody, Research Report, RR-83–19, IIASA, Laxenburg, Austria, July 1983.

    Google Scholar 

  8. Williams, J.R. Sediment yield prediction with universal equation using runoff energy factor, Agr.Res.Serv., ARS-S-40, USDA, Washington D.C., 244, 1975.

    Google Scholar 

  9. Bârdossy, A., Bog.rdi, I, and L. Duckstein, Accuracy of sediment yield calculation, Working paper, Tiszadata, Budapest, 1984.

    Google Scholar 

  10. Soil Conservation Service, National Engineering Handbook, Section 4, Hydrology, USDA, Washington D.C., 1971.

    Google Scholar 

  11. Bogdrdi, I. and A. Bdrdossy, A concentration model of P stemming from agricultural watersheds, Research Report /in Hungarian/, Tiszadata, Budapest, 1984.

    Google Scholar 

  12. Volpi, G., G. Gambolati, L. Carbognin, P. Gatto and G. Mozzi, Groundwater contour mapping in Venice by stochastic interpolators, Water Resour. Res., 15 /2/, 291, 1979.

    Google Scholar 

  13. Matheron, G., Les variables régionalisées et leur estimation, 306, Masson, Paris, 1967.

    Google Scholar 

  14. Dunford, N. and J.T. Schwartz, Linear Operators Part I., Interscience Publisher, New York, 358, 1976.

    Google Scholar 

  15. Freimer, M. and P.I. Yu, Some new results on compromise solutions for group decision problems, Management Science, 22 /6/, 688, February 1976.

    Google Scholar 

  16. Yu, P.L. and G. Leitmann, Compromise Solutions, Domination Structures, and Szlukyadze’s Solution, in Multi-criteria Decision Making and Differential Games, edited by G. Leitmann, Plenum Press, New York, 85, 1976.

    Google Scholar 

  17. Duckstein, L. and S. Opricovic, Multiobjective optimization in river basin developments, Water Resour. Res., 16 /1/, 14, 1980.

    Google Scholar 

  18. Wilde, D.J. and C.S. Beightler, Foundations of Optimization, Prentice-Hall, Inc., 480, 1967.

    Google Scholar 

  19. B6rdossy, A., Mathematics of composite programming, Working paper, Tiszadata, Mik6 u. 1. 1012. Budapest, Hungary, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Wien

About this chapter

Cite this chapter

Bárdossy, A., Bogárdi, I., Duckstein, L. (1985). Composite Programming as an Extension of Compromise Programming. In: Serafini, P. (eds) Mathematics of Multi Objective Optimization. International Centre for Mechanical Sciences, vol 289. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2822-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2822-0_15

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-81860-2

  • Online ISBN: 978-3-7091-2822-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics