Skip to main content

The Symmetric Galerkin BEM in Linear and Non-Linear Fracture Mechanics

  • Chapter

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 440))

Abstract

The symmetric Galerkin boundary element method is applied to the analysis of fracture processes involving also heterogeneous (zonewise homogeneous) domains accounting for the presence of interfaces between different subdomains. This method is characterized by the combined use of static and kinematic sources (i.e. traction and displacement discontinuities) to generate a symmetric integral operator and its space-discretization in the Galerkin weighted-residual sense. By virtue of this procedure and in analogy with the analysis of fractures in homogeneous bodies, some meaningful properties (e.g. symmetry and sign definiteness) of key continuum operators are preserved in the discrete form. Some numerical examples are presented, concerning both two-dimensional and threedimensional analyses.

This text was written in the frame of a reasearch project supported by a MURST grant (“Cofinanziamento”) on “Integrity Assesment of Large Dams”

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Balakrishna, C., Gray, L.J. and Kane, J.H. (1994) Efficient analytical integration of symmetric Galerkin boundary integrals over curved elements: thermal conduction formulation, Comp. Meth. Appl. Mech. Engng., 117, 157–179.

    Article  MathSciNet  MATH  Google Scholar 

  • Bazânt, Z.P. and Cedolin, L. (1991) Stability of Structures, Oxford University Press, New York.

    MATH  Google Scholar 

  • Bolzon, G., Maier, G. and Novati, G. (1994) Some aspects of quasi-brittle fracture analysis as a linear complementarity problem, in Bazânt, Z.P., Bittnar, Z., Jirasek, M. and Mazars, J. eds. (eds.), Fracture and Damage in Quasibrittle Structures, E & FN Spon, 159–174.

    Google Scholar 

  • Bolzon, G., Maier, G. and Tin Loi, F. (1995) Holonomic and nonholonomic simulations of quasi-brittle fracture: a comparative study of mathematical programming approaches, in Wittman, F.H. ed. (eds.), Fracture Mechanics of Concrete Structures, Aedificatio Publishers, 885–898.

    Google Scholar 

  • Bolzon, G., Maier, G. and Tin Loi, F. (1997) On multiplicity of solutions in quasi-brittle fracture computations, Comp. Mech., 19, 511–516.

    Article  MATH  Google Scholar 

  • Bolzon, G. and Maier, G. (1998) Identification of cohesive crack models for concrete on the basis of three point bending tests, in de Borst, R., Bicanic, N., Mang, H eds. (eds.), Computational Modelling of Concrete Tests, Balkema, 301–310.

    Google Scholar 

  • Bolzon, G., Fedele, R. and Maier, G. (2002) Parameter identification of a cohesive crack model by Kalman filter, Comp. Meth. Appl. Mech. Engng., to appear.

    Google Scholar 

  • Bonnet, M. and Bui, H.D. (1993) Regularization of the displacements and traction BIE for 3D elastodynamics using indirect methods, in Kane, H., Maier, G., Tosaka, N. and Atluri, S.N. (eds.), Advances in Boundary Element Techniques, Springer Verlag, 1–29.

    Google Scholar 

  • Bonnet, M. (1995) Regularized direct and indirect symmetric variational BIE formulation for three dimensional elasticity, Engng. Analysis with Boundary Elem., 15, 93–102.

    Article  Google Scholar 

  • Bonnet, M., Maier, G. and Polizzotto, C. (1998) Symmetric Galerkin boundary element method, Appl. Mech. Rev., 51, 669–704.

    Article  Google Scholar 

  • Bonnet, M. (1999) Boundary Integral Equation Methods for Solids and Fluids, Wiley, Chichester.

    Google Scholar 

  • Carini, A., Diligenti, M. and Maier, G. (1991) Boundary integral equation analyses in linear viscoelasticity: variational and saddle point formulation, Comp. Mech., 8, 87–98.

    Article  MathSciNet  MATH  Google Scholar 

  • Cen, Z. and Maier, G. (1992) Bifurcations and instabilities in fracture of cohesive-softening structures: a boundary element analysis, Fatigue Fract. Engng. Mater. Struct., 15, 911–928.

    Article  Google Scholar 

  • Comi, C. and Maier, G. (1992) Extremum, convergence and stability properties of the finite-increment problem in elastic-plastic boundary element analysis, Int. J. Solids Structures, 29, 249–270.

    Article  MathSciNet  MATH  Google Scholar 

  • Comi, C., Maier, G. and Perego, U. (1992) Generalized variable finite element modelling and extremum theorems in stepwise holonomic elastoplasticity with internal variables, Comp. Meth. Appl. Mech. Engng., 96, 133–171.

    Article  MathSciNet  Google Scholar 

  • Comi, C. and Perego, U. (1996) A generalized variable formulation for gradient dependent softening plasticity, Int. J. Num. Meth. Engng., 39, 3731–3755.

    Article  MATH  Google Scholar 

  • Corigliano, A. (1993) Formulation, identification and use of interface models in the numerical analysis of composite delamination, Int. J. Solids Structures, 30, 2779–2811.

    Article  MATH  Google Scholar 

  • Dirkse, S.P. and Ferris, M.C. (1995) The PATH solver: a non-monotone stabilization scheme for mixed complementarity problems, Optimization Methods Software, 5, 123–156.

    Article  Google Scholar 

  • Frangi, A. and Novati, G. (1996) Symmetric BE method in two dimensional elasticity: evaluation of double integrals for curved elements, Comp. Mech., 19, 58–68.

    Article  MathSciNet  MATH  Google Scholar 

  • Frangi, A. (1998) Regularization of Boundary. Element formulations by the derivative transfer method, in Slâdek, V., Slâdek, J. (eds.), Singular Integrals in Boundary Element Methods, Advances in Boundary Elements, Computational Mechanics Publications, 125–164.

    Google Scholar 

  • Frangi, A. and Maier, G. (1999) Dynamic elastic-plastic analysis by a symmetric Galerkin boundary element method with time-independent kernels, Comp. Meth. Appl. Mech. Engng., 171, 281–308.

    Article  MATH  Google Scholar 

  • Frangi, A. and Novati, G. (2001) Fracture propagation in 3D, AIMETA 2001, Taormina.

    Google Scholar 

  • Frangi, A., Novati, G., Springhetti, R. and Rovizzi, M. (2002) 3D fracture analysis by the symmetric Galerkin BEM, Comp. Mech.,to appear.

    Google Scholar 

  • Gray, L.J. and Paulino, G.H. (1997) Symmetric Galerkin boundary integral formulation for interface and multi-zone problems, Int. J. Num. Meth. Engng., 40, 3085–3101.

    Article  MathSciNet  MATH  Google Scholar 

  • Hartmann, F., Katz, C. and Protopsaltis, B. (1985) Boundary elements and symmetry, Ing. Arch., 55, 440–449.

    Article  MATH  Google Scholar 

  • Hillerborg, A., Modeer, M. and Petersson, P.E. (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, Cern. Concr. Research, 6, 773–782.

    Article  Google Scholar 

  • Holzer, S. (1993) On the engineering analysis of 2D problems by the symmetric Galerkin boundary element method and coupled BEM/FEM, in Kane, H., Maier, G., Tosaka, N. and Atluri, S.N. (eds.), Advances in Boundary Element Techniques, Springer Verlag, 187–208.

    Google Scholar 

  • Judice, J.J. and Mitra, G. (1988) An enumerative method for the solution of linear complementarity problems, Eur. J. Operat. Res., 36, 122–128.

    Article  MathSciNet  MATH  Google Scholar 

  • Kane, J.H. (1994) Boundary Element Analysis in Engineering Continuum Mechanics, Prentice Hall, Englewood Cliffs, N.J..

    Google Scholar 

  • Karihaloo, B.L. (1995) Fracture Mechanics and Structural Concrete, Longman Scientific & Technical, Harlow, Essex.

    Google Scholar 

  • Kassir, M.K. and Sih, G.C. (1966) Three dimensional stress distribution around an elliptical crack under arbirary loadings, J. Applied Mech., 33, 602–615.

    Google Scholar 

  • Lubliner, J. (1990) Plasticity Theory, Macmillan, New York.

    MATH  Google Scholar 

  • Maier, G. (1971) Incremental plastic analysis in the presence of large displacements and physical instabilizing effects, Int. J. Solids Structures, 7, 345–372.

    Article  MathSciNet  MATH  Google Scholar 

  • Maier, G. and Polizzotto, C. (1987) A Galerkin approach to boundary element elastoplastic analysis, Comp. Meth. Appl. Mech. Engng., 60, 175–194.

    Article  MATH  Google Scholar 

  • Maier, G., Cen, Z., Novati, G. and Tagliaferri, R. (1991) Fracture, path bifurcations and instabilities in elastic-cohesive-softening models: a boundary element approach, in Van Mier, J.G.M., Rots, J.G. and Bakker, A. eds. (eds.), Fracture Processes in Concrete, Rock and Ceramics -2, E. & FM. Spon, 561–570.

    Google Scholar 

  • Maier, G., Diligenti, M. and Carini, A. (1991) A Variational Approach to Boundary Element Elastodynamic Analysis and extension to multidomain problems, Comp. Meth. Appl. Mech. Engng., 92, 192–213.

    MathSciNet  Google Scholar 

  • Maier, G., Miccoli, S., Novati, G. and Sirtori, S. (1992) A Galerkin symmetric boundary element method in plasticity: formulation and implementation, in Kane, J.H., Maier, G., Tosaka, N. and Atluri, S.N. eds. (eds.), Advances in Boundary Elements Techniques, Springer Verlag, 288–328.

    Google Scholar 

  • Maier, G., Novati, G. and Cen, Z. (1993) Symmetric Galerkin boundary element method for quasi-brittle fracture and frictional contact problems, Comp. Mech., 13, 74–89.

    MATH  Google Scholar 

  • Maier, G., Miccoli, S., Novati, G. and Perego, U. (1995) Symmetric Galerkin boundary element method in plasticity and gradient plasticity, Comp. Mech., 17, 115–129.

    Article  MATH  Google Scholar 

  • Maier, G. and Frangi, A. (1997) Quasi-brittle fracture mechanics by a symmetric Galerkin boundary element method, in Karihaloo, B.L., Mai, Y.W., Ripley, M.I. and Ritchie, R.O. (eds.), Advances in Fracture Research -4, Pergamon, 1837–1848.

    Google Scholar 

  • Maier, G. and Frangi, A. (1998) Symmetric boundary element method for “discrete” crack modelling of fracture processes, Comp. Assisted Mech. and Engng. Science, 5, 201–226.

    MathSciNet  MATH  Google Scholar 

  • Maier, G. and Comi, C. (2000) Energy properties of solutions to quasi-brittle fracture mechanics problems with piecewise linear cohesive crack models, in Benallal, A. ed. (eds.), Continuous Damage and Fracture, Elsevier, 197–205.

    Google Scholar 

  • Li, S., Mear, M.E. and Xiao, L. (1998) Symmetric weak-form integral equation method for three-dimensional fracture analysis, Comp. Meth. Appl. Mech. Engng., 151, 435–459.

    Article  MathSciNet  MATH  Google Scholar 

  • Mi, Y. (1996) Three-dimensional Analysis of Crack Growth, Computational Mechanics Publi-cations, Southampton.

    MATH  Google Scholar 

  • Pan, E. and Maier, G. (1997) A variational formulation of the boundary element method in transient poroelasticity, Comp. Mech., 19, 167–178.

    Google Scholar 

  • Polizzotto, C. (1988) An energy approach to the boundary element method, part I: elastic solids, Comp. Meth. Appl. Mech. Engng., 69, 167–184.

    Article  MathSciNet  MATH  Google Scholar 

  • Polizzotto, C. (1988) An energy approach to the boundary element method,part II: elastic-plastic solids, Comp. Meth. Appl. Mech. Engng., 69, 263–276.

    Article  MathSciNet  MATH  Google Scholar 

  • Ralph, D. (1994) Global convergence of damped Newton’s method for nonsmooth equations via the path search, Math. Oper. Res., 19, 352–389.

    Article  MathSciNet  MATH  Google Scholar 

  • Raju, I.S. and Newman, J.C. (1977) Three dimensional finite-element analysis of finite-thickness fracture specimens, NASA-TN, D-8414.

    Google Scholar 

  • Saouma, V.E., Brühwiler, E. and Boggs, H.L. (1990) A review of fracture mechanics applied to concrete dams, Dam Engng., 1, 41–57.

    Google Scholar 

  • Sirtori, S. (1979) General stress analysis method by means of integral equations and boundary elements, Meccanica, 14, 210–218.

    Article  MATH  Google Scholar 

  • Sirtori, S., Maier, G., Novati, G. and Miccoli, S. (1992) A Galerkin symmetric boundary element method in elasticity: formulation and implementation, Int. J. Num. Meth. Engng., 35, 255–282.

    Article  MathSciNet  MATH  Google Scholar 

  • Sirtori, S., Miccoli, S. and Korach, E. (1993) Symmetric coupling of finite elements and boundary elements, in Kane, H., Maier, G., Tosaka, N. and Atluri, S.N. (eds.), Advances in Boundary Element Techniques, Springer Verlag, 407–427.

    Google Scholar 

  • Slâdek, J. and Slâdek, V. (1983) Three dimensional curved crack in an elastic body, Int. J. Solids Structures, 19, 425–436.

    Article  MATH  Google Scholar 

  • Tin-Loi, F.H. and Ferris, X. (1997) Holonomic analysis of quasi-brittle fracture with nonlinear softening, in Karihaloo, B.L., Mai, Y.W., Ripley, M.I. and Ritchie, R.O. eds. (eds.), Advances in Fracture Research -4, Pergamon

    Google Scholar 

  • Wittman, F.H. and Hu, X. (1991) Fracture process zone in cementitious materials, Int. Journal of Fracture, 51, 3–18.

    Article  Google Scholar 

  • Xu, X. and Needleman, A. (1994) Numerical simulation of fast crack growth in brittle solids, J. Mech. Phys. Solids, 42, 1397–1434.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Wien

About this chapter

Cite this chapter

Frangi, A., Maier, G. (2003). The Symmetric Galerkin BEM in Linear and Non-Linear Fracture Mechanics. In: Beskos, D., Maier, G. (eds) Boundary Element Advances in Solid Mechanics. International Centre for Mechanical Sciences, vol 440. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2790-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2790-2_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-00378-7

  • Online ISBN: 978-3-7091-2790-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics