Shape Optimization with FEM

  • G. Iancu
  • E. Schnack
Part of the International Centre for Mechanical Sciences book series (CISM, volume 325)


Shape optimization with the Finite Element Method is a very powerful tool for minimizing stress concentration in machine components. The aim is to find shapes of domains so that the stress field at the critical boundary has a special characteristic. This is important because stress optimal machine components show a better fatigue behaviour if they are used in the low frequency region.


Nodal Point Distribute Parameter System Feasible Direction Shape Optimization Problem Design Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Iancu, G.: Optimierung von Spannungskonzentrationen bei dreidimensionalen elastischen Strukturen. Doctoral Thesis, Karlsruhe University, 1991.Google Scholar
  2. [2]
    Iancu, G., E. Schnack: Knowledge-Based Shape Optimization. First Conference on Computer Aided Optimum Design of Structures (CAOD) OPTI 89: Computer Aided Optimum Design of Structures: Recent Advances. Eds.: C.A. Brebbia and S. Hernandez. Springer-Verlag, Berlin, Heidelberg, New York 1989, pp. 71–83.Google Scholar
  3. [3]
    Iancu, G., E. Schnack: Shape Optimization Scheme for Large Scale Structures. Proceedings of the Second World Congress on Computational Mechanics, 27–31 August 1990, Stuttgart/Germany. to appearGoogle Scholar
  4. [4]
    Gill, P.E., W. Murray, M.A. Saunders, M.H. Wright: Aspects of Mathematical Modelling Related to Optimization. Appl. Math. Modelling 5 (1981), pp. 71–83.CrossRefzbMATHMathSciNetGoogle Scholar
  5. [5]
    Neuber, H.: Kerbspannungslehre. Grundlagen für genaue Festigkeitsberechnung, 3. Auflage. Springer-Verlag, Berlin, Heidelberg, 1985.Google Scholar
  6. [6]
    Schnack, E.: Ein Iterationsverfahren zur Optimierung von Spannungskonzentrationen. Habilitationsschrift, Univ. Kaiserslautern, 1977.Google Scholar
  7. [7]
    Schnack, E.: Ein Iterationsverfahren zur Optimierung von Kerboberflächen. VDI-Forschungsheft, Nr. 589, Düsseldorf, VDI-Verlag 1978.Google Scholar
  8. [8]
    Schnack, E.: An Optimization Procedure for Stress Concentrations by the Finite Element Technique. IJNME 14, No. 1 (1979), pp. 115–124.CrossRefzbMATHGoogle Scholar
  9. [9]
    Schnack, E.: Optimierung von Spannungskonzentrationen bei Viellastbeanspruchung. ZAMM 60 (1980), T151 - T152.Google Scholar
  10. [10]
    Schnack, E.: Optimal Designing of Notched Structures without Gradient Computation. Proceedings of the 3rd IFAC-Symposium, Toulouse/France, 29 June–2nd July 1982. In: Control of Distributed Parameter Systems. Eds: J.P. Barbary and L. Le Letty. Pergamon Press, Oxford, New York, Toronto, Sydney, Paris, Frankfurt 1982, pp. 365–369.Google Scholar
  11. [11]
    Schnack, E.: Computer Simulation of an Experimental Method for NotchShape-Optimization. Proceedings of the Int. Symp. of IMACS, 9–11 May 1983 in Nantes. In: Simulation in Engineering Sciences, Tome 2. Eds: J. Burger and Y. Janny. Elsevier Science Publishers B.V. ( North Holland ), Amsterdam 1985, pp. 269–275.Google Scholar
  12. [12]
    Schnack, E.: Local Effects of Geometry Variation in the Analysis of Structures. Studies in Applied Mechanics 12: Local Effects in the Analysis of Structures. Ed.: P. Ladevèze. Elsevier Science Publisher, Amsterdam 1985, pp. 325–342.Google Scholar
  13. [13]
    Schnack, E.: Free Boundary Value Problems in Elastostatics. Proceedings of the 4th Int. Symp. on Numerical Methods in Engineering, Atlanta, Georgia/ USA, 24–28 March 1986. In: Innovative Numerical Methods in Engineering. Eds.: R.P. Shaw, J. Periaux, A. Chaudouet, J. Wu, C. Marino, C.A. Brebbia. Computational Mechanics Publications Southampton, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo 1986, pp. 435–440.Google Scholar
  14. [14]
    Schnack, E.: A Method of Feasible Direction with FEM for Shape Optimization. Invited lecture: Proceedings of the IUTAM-Symp. on Structural Optimization, Melbourne, 9–13 February 1988. In: Structural Optimization. Eds.: G.I.N. Rozvany, B.L: Karihaloo. Kluwer Academic Publishers, Dordrecht, Boston, London 1988, pp. 299–306.Google Scholar
  15. [15]
    Schnack, E., G. Iancu: Control of the von Mises Stress with Dynamic Programming. GAMM-Seminar on Discretization Methods and Structural Optimization–Procedures and Applications, 5–7 October 1988, University of Siegen. In: Proceedings of the GAMM-Seminar, Vol. 43. Eds.: H.A. Eschenauer and G. Thierauf. Springer-Verlag, Berlin, Heidelberg 1989, pp. 154–161.Google Scholar
  16. [16]
    Schnack, E., G. Iancu: Shape Design of Elastostatics Structures Based on Local Perturbation Analysis. Structural Optimization 1 (1989), pp. 117–125.CrossRefGoogle Scholar
  17. [17]
    Schnack, E., G. Iancu: Non-Linear Programming Applicable for the Control of Elastic Structures. In: Preprints of the 5th IFAC Symposium on Control of Distributed Parameter Systems, 26–29 June 1989 in Perpignan/France. Eds.: A. El Jai and M. Amouroux. Institut de Science et de Génie des Matériaux et Procédés (CNRS), Groupe d’Automatique, Université de Perpignan 1989, pp. 163–168.Google Scholar
  18. [18]
    Schnack, E., I. Iancu: Shape Design of Elastostatic Structures Based on Local Perturbation Analysis. Structural Optimization 1 (1989), pp. 117–125.CrossRefGoogle Scholar
  19. [19]
    Schnack, E., U. Spörl: A Mechanical Dynamic Programming Algorithm for Structure Optimization. IJNME 23, No. 11 (1986), pp. 1985–2004.CrossRefzbMATHGoogle Scholar
  20. [20]
    Schnack, E., U. Spörl, G. Iancu: Gradientless Shape Optimization with FEM. VDI Forschungsheft 647 /88 (1988), pp. 1–44.Google Scholar
  21. [21]
    Spörl, U.: Spannungsoptimale Auslegung elastischer Strukturen. Doctoral Thesis, Karlsruhe University, 1985.Google Scholar
  22. [22]
    Thum, A., H. Oschatz: Steigerung der Dauerfestigkeit bei Rundstäben mit Querbohrungen. Forsch. Ing. Wes. (1932), S. 87.Google Scholar
  23. [23]
    Zoutendijk, G.: Methods of Feasible Directions. Elsevier Publ. Company. Amsterdam, Princeton, 1960.Google Scholar

Copyright information

© Springer-Verlag Wien 1992

Authors and Affiliations

  • G. Iancu
    • 1
  • E. Schnack
    • 1
  1. 1.Karlsruhe UniversityKarlsruheGermany

Personalised recommendations