Advertisement

Eurocode ’92 pp 147-152 | Cite as

On Generalized Bent Functions

  • P. Langevin
Part of the International Centre for Mechanical Sciences book series (CISM, volume 339)

Abstract

In this paper, we compare binary bent functions and the generalized bent functions from the metric and degree point of view. We give an upper bound on the covering radius of the affine Reed-Muller codes defined over a finite and commutative ring. The paper also gives a bound on the degree of a generalized bent function.

Sur les fonctions courbes généralisées

Résumé

Dans cet article, nous comparons les fonctions courbes binaires et les fonctions courbes généralisées des points de vue métrique et du degré. Nous donnons une majoration du rayon de recouvrement des codes de Reed-Muller affines construits sur des anneaux finis et commutatifs. Une majoration du degré des fonctions courbes généralisées termine l’article.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Delsarte, J. M. Goethals and F. J. Mac Williams: “On generalized Reed-Muller Codes and their relatives”, Info. and Control, vol. 16, pp 403–443, 1970.CrossRefzbMATHGoogle Scholar
  2. [2]
    L. K. Hua: “Introduction to number theory”, Springer-Verlag, 1982. Google Scholar
  3. [3]
    K. Ireland, M. Rosen: “A Classical Introduction to Modern Number Theory”, Graduate Texts in Mathematics, vol. 84, Springer-Verlag, 1990.Google Scholar
  4. [4]
    P. V. Kumar, R. A. Scholtz and L. R. Welch: “Generalized bent functions and their properties”, J. C. T, Series A 40, pp 90–107, 1985.CrossRefzbMATHMathSciNetGoogle Scholar
  5. [5]
    K. Nyberg: “Constructions of bent functions and differerence sets”, Eurocrypt, 1989. Google Scholar
  6. [6]
    F. J. Macwilliams, N. J. A.: Sloane “The Theory of Error-Correcting Codes”, North-Holland Mathematical Library, Amsterdam, 1977.Google Scholar
  7. [7]
    O. S. Rothaus: “On bent functions”, J. C. T. 20, pp 300–305, 1976.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Wien 1993

Authors and Affiliations

  • P. Langevin
    • 1
  1. 1.University of Toulon and VarLa GardeFrance

Personalised recommendations