Skip to main content

Modeling the Mechanical Behavior of Short Fiber Reinforced Composites

  • Chapter
Mechanics of Microstructured Materials

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 464))

Abstract

A discussion of selected modeling approaches for studying the mechanical and thermal expansion behavior of short fiber reinforced composites is given, the emphasis being put on mean field and unit cell models. Aligned and randomly oriented reinforcement geometries as well as more general fiber orientations described via orientation distribution functions are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • S.G. Advani and C.L. Tucker. The use of tensors to describe and predict fiber orientation in short fiber composites. J. Rheol., 31:751–784, 1987.

    Article  Google Scholar 

  • D.H. Allen and J.W. Lee. The effective thermoelastic properties of whisker-reinforced composites as functions of material forming parameters. In G.J. Weng, M. Taya, and H. Abé, editors, Micromechanics and Inhomogeneity, pages 17–40, New York, NY, 1990. Springer-Verlag.

    Chapter  Google Scholar 

  • P.K. Banerjee and D.P. Henry. Elastic analysis of three-dimensional solids with fiber inclusions by BEM. Int. J. Sol. Struct, 29:2423–2440, 1992.

    Article  MATH  Google Scholar 

  • Y. Benveniste. A new approach to the application of Mori-Tanaka’s theory in composite materials. Mech. Mater., 6:147–157, 1987.

    Article  Google Scholar 

  • Y. Benveniste, G.J. Dvorak, and T. Chen. On diagonal and elastic symmetry of the approximate effective stiffness tensor of heterogeneous media. J. Mech. Phys. Sol., 39:927–946, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  • J.G. Berryman. Long-wavelength propagation in composite elastic media, II. Ellipsoidal inclusions. J. Acoust. Soc. Amer., 68:1820–1831, 1980.

    Article  MATH  Google Scholar 

  • A. Bhattacharyya and G.J. Weng. Plasticity of isotropic composites with randomly oriented packeted inclusions. Int. J. Plast., 10:553–578, 1994.

    Article  MATH  Google Scholar 

  • H.J. Böhm. A short introduction to continuum micromechanics. This volume, pages 1–40, 2004.

    Google Scholar 

  • H.J. Böhm, A. Eckschlager, and W. Han. Multi-inclusion unit cell models for metal matrix composites with randomly oriented discontinuous reinforcements. Comput. Mater. Sci., 25:42–53, 2002.

    Article  Google Scholar 

  • H.J. Böhm, W. Han, and A. Eckschlager. Multi-inclusion unit cell studies of reinforcement stresses and particle failure in discontinuously reinforced ductile matrix composites. Comput. Model. Engng. Sci., 5:5–20, 2004.

    MATH  Google Scholar 

  • H.J. Böhm, F.G. Rammerstorfer, and E. Weissenbek. Some simple models for micromechanical investigations of fiber arrangement effects in MMCs. Comput. Mater. Sci., 1: 177–194, 1993.

    Article  Google Scholar 

  • M. Bornert. Homogénéisation des milieux aléatoires: bornes et estimations. In M. Bornert, T. Bretheau, and P. Gilormini, editors, Homogénéisation en mécanique des materiaux 1. Matériaux aléatoires élastiques et milieux périodiques, pages 133–221, Paris, 2001. Editions Hermès.

    Google Scholar 

  • A.R. Clarke, G. Archenhold, and N.C. Davidson. A novel technique for determining the 3d spatial distribution of glass fibres in polymer composites. Compos. Sci. Technol., 55:75–91, 1995.

    Article  Google Scholar 

  • B. Clyne and P.J. Withers. An Introduction to Metal Matrix Composites. Cambridge University Press, Cambridge, 1993.

    Book  Google Scholar 

  • W.M.G. Courage and P.J.G Schreurs. Effective material parameters for composites with randomly oriented short fibers. Comput. Struct., 44:1179–1185, 1992.

    Article  Google Scholar 

  • H.L. Cox. The elasticity and strength of paper and other fibrous materials. Brit. J. Appl. Phys., 3:72–79, 1952.

    Article  Google Scholar 

  • S.K. De and J.R. White, editors. Short Fibre-Polymer Composites. Woodhead Publishing, Cambridge, 1996.

    Google Scholar 

  • M.L. Dunn and H. Ledbetter. Elastic-plastic behavior of textured short-fiber composites. Acta mater., 45:3327–3340, 1997.

    Article  Google Scholar 

  • D. Duschlbauer. Computational Simulation of the Thermal Conductivity of MMCs Under Consideration of the Inclusion-Matrix Interface. PhD thesis, TU Wien, Vienna, Austria, 2003.

    Google Scholar 

  • D. Duschlbauer, H.E. Pettermann, and H.J. Böhm. Mori-Tanaka based evaluation of inclusion stresses in composites with nonaligned reinforcements. Scr. mater., 48:223–228, 2003.

    Article  Google Scholar 

  • R.F. Eduljee and R.L. McCullough. Elastic properties of composites. In R.W. Cahn, P. Haasen, and E.J. Kramer, editors, Materials Science and Technology Vol.13: Structure and Properties of Composites, pages 381–474, Weinheim, 1993. VCH.

    Google Scholar 

  • M. Ferrari. Asymmetry and the high concentration limit of the Mori-Tanaka effective medium theory. Mech. Mater., 11:251–256, 1991.

    Article  Google Scholar 

  • S.Y. Fu and B. Lauke. An analytical characterization of the anisotropy of the elastic modulus of misaligned short-fiber-reinforced polymers. Compos. Sci. Technol., 58: 1961–1972, 1998.

    Article  Google Scholar 

  • H. Fukuda and T.W. Chou. A probabilistic theory of the strength of short-fibre composites with variable fibre length and orientation. J. Mater. Sci., 17:1003–1007, 1982.

    Article  Google Scholar 

  • H. Fukuda and K. Kawata. On Young’s modulus of short fiber composites. Fibre Sci. Technol., 7:207–222, 1974.

    Article  Google Scholar 

  • H. Fukuda and Y. Takao. Thermoelastic properties of discontinuous fiber composites. In Kelly A. and Zwebern C, editors, Comprehensive Composite Materials, Vol.1, pages 377–401, Oxford, 2000. Pergamon Press.

    Chapter  Google Scholar 

  • A.A. Gusev, M. Heggli, H.R. Lusti, and P.J. Hine. Orientation averaging for stiffness and thermal expansion of short fiber composites. Adv. Engng. Mater., 4:931–933, 2002a.

    Article  Google Scholar 

  • A.A. Gusev, H.R. Lusti, and P.J. Hine. Stiffness and thermal expansion of short fiber composites with fully aligned fibers. Adv. Engng. Mater., 4:927–931, 2002b.

    Article  Google Scholar 

  • J.C. Halpin and N.J. Pagano. The laminate approximation for randomly oriented fibrous composites. J. Compos. Mater., 3:720–724, 1969.

    Google Scholar 

  • J.C. Halpin and S.W. Tsai. Effects of environmental factors on composite materials. Technical Report AFML-TR-67–423, Wright-Patterson AFB, Dayton, OH, 1969.

    Google Scholar 

  • Z. Hashin and S. Shtrikman. A variational approach to the theory of the elastic behavior of multiphase materials. J. Mech. Phys. Sol, 11:127–140, 1963.

    Article  MathSciNet  MATH  Google Scholar 

  • R. Hill. A self-consistent mechanics of composite materials. J. Mech. Phys. Sol, 13: 213–222, 1965.

    Article  Google Scholar 

  • G.K. Hu. A method of plasticity for general aligned spheroidal void or fiber-reinforced composites. Int. J. Plast., 12:439–449, 1996.

    Article  MATH  Google Scholar 

  • J.H. Huang. Some closed-form solutions for effective moduli of composites containing randomly oriented short fibers. Mater. Sci. Engng., A315:11–20, 2001.

    Article  Google Scholar 

  • M.S. Ingber and T.D. Papathanasiou. A parallel-supercomputing investigation of the stiffness of aligned short-fiber-reinforced composites using the boundary element method. Int. J. Num. Meth. Engng., 40:3477–3491, 1997.

    Article  Google Scholar 

  • K. Jayaraman and M.T. Kortschot. Correction to the Fukuda-Kawata Young’s modulus theory and the Fukuda-Chou strength theory for short fibre-reinforced composite materials. J. Mater. Sci., 31:2059–2064, 1996.

    Article  Google Scholar 

  • J.W. Ju and L.Z. Sun. Effective elastoplastic behavior of metal matrix composites containing randomly located aligned spheroidal inhomogeneities. Part I: Micromechanics-based formulation. Int. J. Sol. Struct., 38:183–201, 2001.

    Article  MATH  Google Scholar 

  • G. Korb, W. Buchgraber, and T. Schubert. Thermophysical porperties and microstructure of short carbon fibre reinforced Cu-matrix composites made by electroless copper coating or powder metallurgical route respectively. In Twenty-Second IEE/CPMT International Electronics Manufacturing Technology Symposium, pages 98–103, New York, 1998. IEEE.

    Google Scholar 

  • G.T. Kuster and M.N. Toksöz. Velocity and attenuation of seismic waves in two-phase media: I. Theoretical formulation. Geophysics, 39:587–606, 1974.

    Article  Google Scholar 

  • H.K. Lee and S. Simunovic. Modeling of progressive damage in aligned and randomly oriented discontinuous fiber polymer matrix composites. Composites B, 31B:77–86, 2000.

    Article  Google Scholar 

  • A. Levy and J.M. Papazian. Elastoplastic finite element analysis of short-fiber-reinforced SiC/Al composites: Effects of thermal treatment. Acta metall. mater., 39:2255–2266, 1991.

    Article  Google Scholar 

  • H.R. Lusti, P.J. Hine, and A.A. Gusev. Direct numerical predictions for the elastic and thermoelastic properties of short fibre composites. Compos. Sci. Technol., 62: 1927–1934, 2002.

    Article  Google Scholar 

  • B. Mlekusch. Thermoelastic properties of short-fibre-reinforced thermoplastics. Compos. Sci. Technol., 59:911–923, 1998.

    Article  Google Scholar 

  • M. Narkis, A. Vaxman, A. Siegmann, and S. Kenig. Short-fiber thermoplastic composites: Fiber fracture during melt processing. In S.M. Lee, editor, International Encyclopedia of Composites, Vol.5, pages 141–155, New York, NY, 1991. VCH Publishers.

    Google Scholar 

  • S.R. Nutt and A. Needleman. Void nucleation at fiber ends in Al-SiC composites. Scr. metall, 21:705–710, 1987.

    Article  Google Scholar 

  • H.E. Pettermann, H.J. Böhm, and F.G. Rammerstorfer. Some direction dependent properties of matrix-inclusion type composites with given reinforcement orientation distributions. Composites B, 28B:253–265, 1997.

    Article  Google Scholar 

  • H.E. Pettermann, A.F. Plankensteiner, H.J. Böhm, and F.G. Rammerstorfer. A thermo-elasto-plastic constitutive law for inhomogeneous materials based on an incremental Mori-Tanaka approach. Comput. Struct., 71:197–214, 1999.

    Article  Google Scholar 

  • P. Ponte Castafieda and J.R. Willis. The effect of spatial distribution on the effective behavior of composite materials and cracked media. J. Mech. Phys. Sol., 43:1919–1951, 1995.

    Article  Google Scholar 

  • G.L. Povirk, A. Needleman, and S.R. Nutt. An analysis of the effect of residual stresses on deformation and damage mechanisms in Al-SiC composites. Mater. Sci. Engng., A132:31–38, 1991.

    Article  Google Scholar 

  • R. Pyrz. Microstructural description of composites, statistical methods. This volume, pages 173–234, 2004.

    Google Scholar 

  • B.W. Rosen. Mechanics of composite strengthening. In B.W. Rosen, editor, Fiber Composite Materials, pages 37–75, Metals Park, OH, 1965. American Society of Metals.

    Google Scholar 

  • T. Siegmund, R. Cipra, J. Liakus, B. Wang, M. LaForest, and A. Fatz. Processingmicrostructure-property relationships in short fiber reinforced carbon-carbon composite system. This volume, pages 235–258, 2004.

    Google Scholar 

  • N.J. Sørensen. A planar type analysis for the elastic-plastic behaviour of continuous fibre-reinforced metal-matrix composites under longitudinal shearing and combined loading. DCAMM Report No.418, Technical University of Denmark, Lyngby, Denmark, 1991.

    Google Scholar 

  • C.L. Tucker and E. Liang. Stiffness predictions for unidirectional short-fiber composites: Review and evaluation. Compos. Sci. Technol., 59:655–671, 1999.

    Article  Google Scholar 

  • V. Tvergaard. Analysis of tensile properties for a whisker-reinforced metal-matrix composite. Acta metall. mater., 38:185–194, 1990.

    Article  Google Scholar 

  • V. Tvergaard. Three-dimensional analysis of ductile failure in metal reinforced by staggered fibers. Modell. Simul. Mater. Sci. Engng., 9:143–155, 2001.

    Article  Google Scholar 

  • V. Tvergaard. Breakage and debonding of short brittle fibres among particulates in a metal matrix. Mater. Sei. Engng., A369:192–200, 2004.

    Article  Google Scholar 

  • E. Weißenbek and F.G. Rammerstorfer. Influence of the fiber arrangement on the mechanical and thermo-mechanical behavior of short-fiber reinforced MMCs. Acta metall. mater., 41:2833–2843, 1993.

    Article  Google Scholar 

  • G.J. Weng. Explicit evaluation of Willis’ bounds with ellipsoidal inclusions. Int. J. Engng. Sci., 30:83–92, 1992.

    Article  MATH  Google Scholar 

  • J.R. Willis. Bounds and self-consistent estimates for the overall moduli of anisotropic composites. J. Mech. Phys. Sol, 25:185–202, 1977.

    Article  MATH  Google Scholar 

  • T.T Wu. The effect of inclusion shape on the elastic moduli of a two-phase material. Int. J. Sol. Struct, 2:1–8, 1966.

    Article  Google Scholar 

  • C. Zhou, W. Yang, and D. Fang. Damage of short-fiber reinforced metal matrix composites considering cooling and thermal cycling. J. Engng. Mater. Technol., 122:203–208, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Wien

About this chapter

Cite this chapter

Böhm, H.J. (2004). Modeling the Mechanical Behavior of Short Fiber Reinforced Composites. In: Böhm, H.J. (eds) Mechanics of Microstructured Materials. International Centre for Mechanical Sciences, vol 464. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2776-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2776-6_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-24154-7

  • Online ISBN: 978-3-7091-2776-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics