Skip to main content

Development of Elastoplastic Strain Hardening Models of Soil Behaviour

  • Chapter
  • 317 Accesses

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 461))

Abstract

The paper presents the historical development of fundamental concepts related to the modelling of the non-linear and irreversible behaviour of soils. The concepts of failure, flow rule, successive yield surfaces and hardening rules are recalled. The original Granta Gravel and Cam Clay models are presented and discussed. The basic structure of the work-hardening model of Lade is sketched. The strain-hardening model of Nova and Wood, together with its successive modifications, is described in greater detail and numerous comparisons between experimental data and theoretical predictions are shown.

This paper is written within the framework of DIGA network (supported by the European Commission under contract n. HPRN-CT2002-00220) and ALERT Geomaterials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baldi G., Nova R. (1983) Effetti della penetrazione della membrana in prove di liquefazione R. 15° Cong. Naz. Geotecnica, Spoleto, 1, 3–12.

    Google Scholar 

  • Borsetto M., Imperato L., Nova R., Peano A. (1983) Effects of pressuremeter of finite length in soft clay. Proc. Int. conf. ‘In Situ Testing’ Paris, 2, 211–215.

    Google Scholar 

  • Botti E., Canetta G., Nova R., Peduzzi R. (1988) An application of a strain hardening model to the design of tunnels in sand. Proc. 6th ICONMIG, Innsbruck, 3, 1641–1646.

    Google Scholar 

  • Boussinesq J. (1885) Applications des potentielles a 1’etude de 1’equilibre et du mouvement des solides elastiques. Gauthier-Villars, Paris.

    Google Scholar 

  • Britto A. M., Gunn M. J. (1987) Critical State Soil Mechanics via Finite elements. Ellis Horwood.

    Google Scholar 

  • Burland J. B. (1967) Deformation of soft clay. Ph. D., Thesis, University of Cambridge.

    Google Scholar 

  • Castro G. (1969) Liquefaction of sand. Harvard SM Series N. 81

    Google Scholar 

  • Cerruti V. (1882) Rend. Accademia Lincei Mem. Fis. Mat.

    Google Scholar 

  • Cole E. R. (1967) Soils in the simple shear apparatus. Ph. D. Thesis University of Cambridge.

    Google Scholar 

  • Coulomb A. (1976) Essai sur une application des règles des maximis et minimis a quelques problèmes de statique relatifs a l’architecture. Mem. de Mat. et de Phys. 7, 1773, 343–382, Paris.

    Google Scholar 

  • Drucker D. C., Gibson R. E., Henkel D. J. (1957) Soil Mechanics and workhardening theories of plasticity. Trans. ASCE, 122, 338–346.

    Google Scholar 

  • Drucker D. C., Prager W. (1952) Soil mechanics and plastic analysis or limit design. Quart. App. Math. 10, 2, 157–165.

    MATH  MathSciNet  Google Scholar 

  • El-Sohby M. A. (1964) The behaviour of particulate materials under stress. Ph. D. Thesis, University of Manchester.

    Google Scholar 

  • Gens A., Potts D. M. (1988) Critical state models in computational geomechanics Eng. Comp. 5, 178–197.

    Google Scholar 

  • Gudehus G., Darve F., Vardoulakis I. (1984) Constitutive modelling of soil behaviour. Proc. Grenoble Workshop, September 1982, Balkema.

    Google Scholar 

  • Holubec I. (1966) The yielding of cohesionless soils. Ph. D. thesis, University of Waterloo.

    Google Scholar 

  • Ishihara K., Tatsuoka F., Yasuda S. (1975) Undrained deformation and liquefaction of sand under cyclic stresses. Soils and Foundations 15, 1, 29–44.

    Article  Google Scholar 

  • Jamiolkowski M., Lancellotta R., Marchetti S., Nova R., Pasqualini E., (1979) General report design parameters for soft clay, 7 ECSMFE, Brighton, State of the art volume 1–39.

    Google Scholar 

  • Kelvin Lord, (Thomson W.) (1855) Quart J. of Math.

    Google Scholar 

  • Kim M. K., Lade P. V. (1988) Single hardening constitutive model for frictional materials I. Plastic potential function. Computers and Geotechnics, 5, 4, 397–324.

    Article  Google Scholar 

  • Lade P. V. (1977) Elastoplastic stress-strain theory for cohesionless soil with curved yield surfaces. Int. J. Solids abd Structures, 13, 1019–1035.

    Article  MATH  Google Scholar 

  • Lade P. V. (1988) Double hardening constitutive model for soils parameter determination and predictions for two sands. Proc. Cleveland Workshop Constitutive Equations for Granular Non-Cohesive Soils, 367–382.

    Google Scholar 

  • Lade P. V., Nelson R. B. (1987) Modelling the elastic behaviour of granular materials. Int. J. Num. An. Meth. Geom., 11, 5, 521–542.

    Article  Google Scholar 

  • Lade P. V., Kim M. K. (1988) Single hardening constitutive model for frictional materials II. Yield criterion and plastic work contours. Computers and Geotechnics, 6, 1, 13–30.

    Article  Google Scholar 

  • Lade P. V., Kim M. K. (1988) Single hardening constitutive model for frictional materials III. Comparison with experimental data. Computers and Geotechnics, 6, 1, 31–48.

    Article  Google Scholar 

  • Lode W. (1926) Versuche uber den Einfluss der mittleren Hauptspannung auf das Fliessen der Metalle Eisen, Kupfer and Nickel, 2, Physik 36, 913–939.

    Article  Google Scholar 

  • Matsuoka H., Nakai T. (1974) Stress deformation and strength characteristics under three different principal stresses. Proc. JSCE 232, 59–70.

    Google Scholar 

  • Matsuoka H., Nakai T. (1982) A new failure condition for soils in three-dimensional stresses. Proc. IUTAM conf. Deformation and Failure of Granular Materials, Delft, 253–263.

    Google Scholar 

  • Mises R. von (1913) Mechanik der festen Korper in plastisch deformablen Zustand. Gottinger Nachrichten, Math. Phys. Kl. 582–592.

    Google Scholar 

  • Mroz W. (1967) On the description of anisotropic work hardening. I. J. Mech. Phys. Solids 15, 163–175.

    Article  Google Scholar 

  • Namy D. (1970) An investigation of certain aspects of stress strain for clay soils. Ph. D. thesis, Cornell University.

    Google Scholar 

  • Nova R. (1977) On the hardening of soils. Archiv. Mech. Stos. 29, 3, 445–458.

    Google Scholar 

  • Nova R. (1982) A model of soil behaviour in plastic and hysteretic ranges. Part I–monotonic loading. Proc. Int. workshop ‘Constitutive modelling of soils behaviour’ Villard de Lans, published 1984, 289–309.

    Google Scholar 

  • Nova R. (1988) Sinfonietta classica: an exercise on classical soil modelling. Proc. Symp. Constitutive Equations for Granular non-cohesive soils, Cleveland.

    Google Scholar 

  • Nova R., Hueckel T. (1980) A geotechnical stress variables approach to cyclic behaviour of soils. Proc. Behaviour of soils under cyclic and transient loading. Swansea, 1, 301–314.

    Google Scholar 

  • Nova R., Hueckel T. (1981) A unified approach to the modelling of liquefaction and cyclic mobility. Soils and Foundations 21, 13–28.

    Article  Google Scholar 

  • Nova R., Wood D. M. (1978) An experimental programme to define the yield function for sand. Soils and Foundations 18, 4, 77–86.

    Article  Google Scholar 

  • Nova R., Wood D. M. (1979) A constitutive model for sand in triaxial compression. I. J. Num: Anal. Meth. Geomech. 3, 3, 255–278.

    Google Scholar 

  • Poorooshasb H. B. (1971) Deformation of sand in triaxial compression. 4th Asian Reg. Conf on Soil Mech., Bangkok, 1, 63–66.

    Google Scholar 

  • Poorooshasb H. B., Holubec I., Sherbourne A. N. (1966) Yielding and flow of sand in triaxial compression. (Part I), Can Geotech. J 3, 4, 179–190.

    Article  Google Scholar 

  • Poorooshasb H. B., Holubec I., Sherbourne A. N. (1967) Yielding and flow of sand in triaxial compression. (Parts II and III), Can Geotech. J. 4, 4, 376–397.

    Article  Google Scholar 

  • Poulos H. G., Davis E. H (1974) Elastic solutions for soil and rock mechanics. Wiley.

    Google Scholar 

  • Rendulic L. (1937) Ein Grundgesetz der Tonmechanik and sein experimenteller Beweis. Bauingenieur, 18, 459–467.

    Google Scholar 

  • Roscoe K. H., Schofield N. A., Wroth C. P (1958) On the yielding of soils. Geotechnique, 8, 22–53.

    Article  Google Scholar 

  • Rowe P. W. (1962) The stress dilatancy relation for static equilibrium of an assembly of particles in contact. Proc. Roy. Soc., A269, 500–527.

    Article  Google Scholar 

  • Saada A., Bianchini G. (1988) Constitutive equations for granular non cohesive soils. Proc. Int. Workshop, Cleveland 22–24 July 1987, Balkema.

    Google Scholar 

  • Schofield N. A., Wroth C. P (1968) Critical State Soil Mechanics. McGraw-Hill, London.

    Google Scholar 

  • Stroud M. A. (1971) The behaviour of sand at low stress levels in the simple shear apparatus. Ph. D., Thesis. University of Cambridge.

    Google Scholar 

  • Vesic A. S., Clough G. V. (1968) Behaviour of granular materials under high stresses. J. Soil Mech. Found. Div., Proc. ASCE, 94, SM3, 661–688.

    Google Scholar 

  • Taylor G. I., Quinney H. (1931) The plastic distortion of metals. Phil. Trans. Roy. Soc. A, 230, 323–362.

    Article  MATH  Google Scholar 

  • Terzaghi K. (1923) Die berechnung der Durchlassigkeitsziffer des Tones aus dem Verlauf der Hydrodynamischen Spannungsuscheinungen. Akad. Der Wissens. Wien, Math. -naturwiss. kl. Part. IIa, 132, 3 /4 125–138.

    Google Scholar 

  • Terzaghi K. (1925) Erdbaumechanik auf Bodenphysicalischer Grundlage. Vienna, Denticke.

    Google Scholar 

  • Tresca H. (1868) Memoire sur l’ecoulement des corps solides. Mem. Pres par div. Savants 18, 733–799.

    Google Scholar 

  • Vermeer P. A. (1978) A double hardening model for sand. Géotechnique 28, 4, 413–433.

    Article  Google Scholar 

  • Wroth C. P. (1977) The predicted performance of a soft clay under a trial embankment loading based on the Cam Clay model. in Finite Elements in Geomechanics. G. Gudehus Editor, CH 6, Wiley.

    Google Scholar 

  • Zienkiewicz O. C., Humpheson C., Lewis R. W. (1975) Associated and non-associated viscoplasticity and plasticity in Soil Mechanics. Géotechnique 25, 4, 671–689.

    Article  Google Scholar 

  • Zytynsky M., Randolph M. F., Nova R., Wroth C. P. (1978) On modelling the unloading-reloading behaviour of soils. I. J. Num. Anal. Meth. Geomech. 2, 87–94.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Wien

About this chapter

Cite this chapter

Nova, R. (2004). Development of Elastoplastic Strain Hardening Models of Soil Behaviour. In: Darve, F., Vardoulakis, I. (eds) Degradations and Instabilities in Geomaterials. International Centre for Mechanical Sciences, vol 461. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2768-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2768-1_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-21936-2

  • Online ISBN: 978-3-7091-2768-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics