Advertisement

Basics of Rock Fracture Mechanics

  • R. A. Schmidt
  • H. P. Rossmanith
Part of the International Centre for Mechanical Sciences book series (CISM, volume 275)

Abstract

An understanding of the mechanics and mechanisms of rock fracture is a key element in solving a great many engineering problems that involve geotechnical structures. A “geotechnical structure” may be simply a rock mass containing a fossile fuel such as coal, oil, or gas or a mineral with valuable elements such as copper, iron, or aluminum. The rock mass becomes a structure when man enters the picture by drilling a hole, boring a tunnel, or digging a longwall, room and pillar, or open pit mine. The methods used in extracting these fossil fuels and minerals or in simply making tunnels invariably involve rock fracture of one form or another. These take such forms as drilling, blasting, boring, and well stimulation by hydraulic fracturing and explosive fracturing.

Keywords

Fracture Toughness Stress Intensity Factor Crack Length Plastic Zone Hydraulic Fracture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. /1/.
    Irwin, G. R. and A. A. Wells: A continuum-mechanics view of crack propagation, Metallurgical Review, 10, 223–270 (1965)CrossRefGoogle Scholar
  2. /2/.
    Coulomb, C. A.: Sur une application des regles de maximis et minimis a quelques problemes de statique relatifs a l’architecture. Acad. Roy. des Sciences Memoires de Math. et de Phys. par divers savans, 7, 343–382 (1773)Google Scholar
  3. /3/.
    Jaeaer, J. C. and N. G. W. Cook: Fundamentals of Rock Mechanics, Chapman and Hall Ltd, London (1969)Google Scholar
  4. /4/.
    Griffith, A. A.: The theory of rupture. Proc. of First Int’l Congr. on Appl. Mech., 55 (1924)Google Scholar
  5. /5/.
    Begley, J. A. and J. D. Landes: The J-integral as a failure criterion. Fracture Toughness, ASTM STP 514, ASTM, p. 1, (1972)Google Scholar
  6. /6/.
    Rudnicki, J. W.: Fracture mechanics applied to the earth’s crust. Ann. Rev. Earth Planet. Sci. 8, 489–525 (1980)Google Scholar
  7. /7/.
    Ouchterlony, F.: Review of fracture toughness testing of rock. Swedish Detonic Research Foundation Report, DS 1980: 15 (1980)Google Scholar
  8. /8/.
    Broek, D.: Elementary Engineering Fracture Mechanics. Noordhoff Int. Publ., Leyden, Netherlands (1974)Google Scholar
  9. /9/.
    Tentative method of test for plane strain fracture toughness of metallic materials (ASTM designation: E-399–72T), Annual Book of Standards, Part 31, Amer. Soc. for Testing and Materials, Philadelphia, Pa (1972)Google Scholar
  10. /10/.
    Westergaard, H. M.: Bearing pressures and cracks. Transactions of ASME, J. Appl. Mech. 6, 49–53 (1939)Google Scholar
  11. /11/.
    Paris, P. C. and G. C. Sih: Stress analysis of cracks. Fracture Toughness Testing and its Applications. ASTM STP 381, Amer. Soc. for Testing and Materials, p. 30 (1965)Google Scholar
  12. /12/.
    Tada, H., P. C. Paris and G. R. Irwin: The Stress Analysis of Cracks Handbook, Del Research Corporation, Hellertown, Pa (1973)Google Scholar
  13. /13/.
    Griffith, A. A.: The phenomena of rupture and flow in solids. Phil. Trans. of the Roy. Soc. of London, Series A-192, p. 163(1920/21)Google Scholar
  14. /14/.
    Cherepanov, G. P.: Mechanics of brittle fracture, McGraw-Hill (1979)Google Scholar
  15. /15/.
    Schmidt, R. A.: A microcrack model and its significance to hydraulic fracturing and fracture toughness testing. Proc. 2lst U. S. Symp. Rock Mechanics, Rolla, MI (1980)Google Scholar
  16. /16/.
    Hoagland, R. G., G. T. Hahn and A. R. Rosenfield: Influence of microstructure on fracture propagation in rock. Rock Mechanics, 5, 77–107 (1973)Google Scholar
  17. /17/.
    Hardy, M. P.: Fracture Mechanics Applied to Rock. PhD Thesis, Univ. of Minnesota (1973)Google Scholar
  18. /18/.
    McClintock, F. A. and G. R. Irwin: Plasticity aspects of fracture mechanics. Fracture Toughness Testing and its Applications, ASTM STP 381, p. 84(1965)Google Scholar
  19. /19/.
    Schmidt, R. A. and T. J. Lutz: KT and JI of Westerly granite - effects of thickness and in-plane diméRsions. STM STP 678, ASTM, p. 166(1979)Google Scholar
  20. /20/.
    Ingraffea, A. R. and R. A. Schmidt: Experimental verification of a fracture mechanics model for tensile strength prediction of Indiana limestone. Proc. l9th U. S. Symp. Rock Mechanics, Stateline, NV, p. 247(1978)Google Scholar
  21. /21/.
    Nelson, F. G., P. E. Schilling and S. G. Kaufman: The effect of specimen size on the results of plane strain fracture toughness tests. Eng. Fract. Mechanics, 4, p.33(1972)Google Scholar
  22. /22/.
    Jones, M. H. and W. F. Brown Jr.: The influence of crack length and thicknessin plane-strain fracture toughness tests. Review of Developments in Plane-Strain Fracture Toughness Testing, ASTM STP 463, ASTM, p. 63 (1970)Google Scholar
  23. /23/.
    Mindess, S. and J. S. Nadeau: Cement and Concrete Research, 6, 529–534 (1976)CrossRefGoogle Scholar
  24. /24/.
    Hoagland, R. G., G. T. Hahn and A. R. Rosenfield: Influence of microstructure on fracture propagation in rock. Rock Mechanics, 5, 77–106 (1973)Google Scholar
  25. /25/.
    Schmidt, R. A. : Fracture toughness testing of limestone. Exp. Mech. 16, p. 161(1976)Google Scholar
  26. /26/.
    Schmidt, R. A. and C. W. Huddle: Effect of confining pressure on fracture toughness of Indiana limestone. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 14, 289–293 (1977)Google Scholar
  27. /27/.
    Paris, P. C. : Crack growth due to variations in load. PhD Thesis, Lehigh University, Pa(1962)Google Scholar
  28. /28/.
    Schmidt, R. A. : Fracture toughness testing of limestone. Exp. Mech. 16, p. 161(1976)Google Scholar
  29. /29/.
    Johnson, J. N. et al.: Analysis of fracture for hollow cylindrical and spherical rock specimens subject to internal pressure with application to underground nuclear containment. TerraTek Report on Contract No. DNA 001–73-C-0153, Salt Lake City, Utah (1973)Google Scholar
  30. /30/.
    Barker, L. M.: A simplified method for measuring plane strain fracture toughness. Eno. Fract. Mech. 9,p. 361. (1977)CrossRefMathSciNetGoogle Scholar
  31. /31/.
    Birch, F.: J. Geophys. Research, 65, 4, p. 1083 (1960)CrossRefGoogle Scholar
  32. /32/.
    Brace, W. F.: J. Geophys. Research, 70, 2, p. 391 (1965)CrossRefGoogle Scholar
  33. /33/.
    Brown, Jr. W. F. and J. E. Srawley: Plane strain crack toughness testing of high strength metallic materials. ASTM STP 410, ASTM, 1–65 (1966)Google Scholar
  34. /34/.
    See Ref. /9/Google Scholar
  35. /35/.
    Mills, W. J., L. A. James and J. A. Williams. J. of Testing and Evaluation, 5, 6, 446–451 (1977)CrossRefGoogle Scholar
  36. /36/.
    Merkle, J. G. and H. T. Corten: J. Pressure Vessel Technology,96, Series J, 4, 286–292 (1974)CrossRefGoogle Scholar
  37. /37/.
    Schmidt, R. A. and S. E. Benzley: Stress intensity factors of edge crack specimens under hydrostatic compression with application to measuring fracture toughness of rock. Int. J. Fracture, 12, p. 320 (1976)CrossRefGoogle Scholar
  38. /38/.
    Rossmanith, H. P.: Modelling of fracture process zones and singularity dominated zones. Eng. Fract. Mech. (to appear 1982 ).Google Scholar

Copyright information

© Springer-Verlag Wien 1983

Authors and Affiliations

  • R. A. Schmidt
    • 1
  • H. P. Rossmanith
    • 2
  1. 1.TerraTek InternationalApplied Geomechanics DivisionSalt Lake CityUSA
  2. 2.Institute of MechanicsTechnical UniversityViennaAustria

Personalised recommendations