Skip to main content

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 348))

Abstract

Models for prediction of fracture and damage in composite laminates are presented. Present knowledge on the controlling mechanisms of fracture and damage are as well discussed. Failure criteria and failure mechanisms are first presented for unidirectional laminates. Models for failure prediction of unidirectional laminates under multiaxial stress states are explained and recommendations are made. The first ply failure and last ply failure criteria for composite laminates composed of plies with varying orientations are then discussed. Fracture mechanics of composite laminates, in particular delaminations, are analysed in detail. Elastic crack tip stress and strain fields are presented for cracks in anisotropic materials as well as for delaminations between dissimilar materials. The last section covers damage mechanics concepts in application to composite laminates. Advantages and disadvantages of the phenomenological and the micromechanical approach are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

5.1 Textbooks

  • Agarwal B.D. and Broutman L.J., 1990, “Analysis and performance of fiber composites”, John Wiley, ISBN 0–471–51152–8

    Google Scholar 

  • Chou T.–W., 1992, “Microstructural design of fiber composites”, Cambridge University Press, ISBN 0–521–35482–X

    Google Scholar 

  • Christensen R.M., 1979, “Mechanics of composite materials”, John Wiley, ISBN 0–47105167–5

    Google Scholar 

  • Composite Materials: Fatigue and Fracture (Third Volume), ed. T.K. O’Brien, ASTM STP 1110, ISBN 0–8031–1419–2

    Google Scholar 

  • Composite Materials Series, 1989, “Application of fracture mechanics to composite materials”, Vol. 6, ed. K. Friedrich, Series editor R.B. Pipes, Elsevier, ISBN 0–444–87286–8 (Vol. 6), ISBN 0–444–42525–X (Series)

    Google Scholar 

  • Composite Materials Series, 1991, “Fatigue of composite materials”, Vol. 4, ed. K.L. Reifsnider, Series editor R.B. Pipes, Elsevier, ISBN 0–444–70507–4 (Vol. 4), ISBN 0–444–42525X (Series)

    Google Scholar 

  • Datoo M.H., 1991, “Mechanics of fibrous composites”, Elsevier, ISBN 1–85166–600–1

    Google Scholar 

  • Harris B., 1986, “Engineering composite materials”, The Institute of Metals, 1 Carlton House Terrace, London SW1Y 5DB, ISBN 0–901462–28–4

    Google Scholar 

  • Hill R., 1950, “The mathematical theory of plasticity”, Oxford University Press

    Google Scholar 

  • Hull D., 1981, “An introduction to composite materials”, Cambridge University Press, ISBN 0–521–28392–2

    Google Scholar 

  • Kachanov L.M., 1986, “Introduction to continuum damage mechanics”, Martinus Nijhoff, Dordrecht, The Netherlands

    Google Scholar 

  • Lemaitre J. and Chaboche J.–L., 1990, “Mechanics of solid materials”, Cambridge University Press, ISBN 0–521–32853–5

    Google Scholar 

  • Mallik P.K., 1988, “Fiber–reinforced composites; materials, manufacturing, and design”, Marcel Dekker, ISBN 0–8247–7796–4

    Google Scholar 

  • Morley J.G., 1987, “High–performance fibre composites”, Academic Press, ISBN 0–12506445–4

    Google Scholar 

  • Nilsson K.-E, 1992, “On combined buckling and interface crack growth”, Doctoral thesis, Department of Solid Mechanics, Royal Institute of Technology, S-100 44 Stockholm, Sweden

    Google Scholar 

  • Tsai S.W., 1987, “Composites design”, Third edition, Think Composites, ISBN 0–96180900–0

    Google Scholar 

  • Vinson J.R. and Sierakowski R.L., 1986, “The behaviour of structures composed of composite materials”, Martinus Nijhoff Publishers, ISBN 90–247–3125–9

    Google Scholar 

  • Abrate S., 1991, “Impact on laminated composite materials”, Appl. Mech. Rev., Vol. 44, 155–190

    Article  Google Scholar 

5.2 Articles

  • Argon A.S., 1972, Treatise of Materials Science and Technology, Vol. 1 p. 79, Academic Press, New York

    Google Scholar 

  • Asp L., Berglund L. and Gudmundson P., 1993, in preparation

    Google Scholar 

  • Azzi V.D. and Tsai S.W., 1965, “Anisotropie strength of composites”, Experimental Mechanics, Vol. 5, 283–288

    Article  Google Scholar 

  • Budiansky B., 1983, “Micromechanics”, Computers & Structures, Vol. 16, 3–12

    Article  MATH  Google Scholar 

  • Budiansky B. and Fleck N.A., 1993, “Compressive failure of fibre composites”, J. Mech. Phys. Solids, Vol. 41, 183–211

    Article  Google Scholar 

  • Comninou M, 1977, “The interface crack”, J. Appl. Mech., Vol. 44, 631–636

    Article  MATH  Google Scholar 

  • Ewins P.D. and Ham A.C., 1973, “The nature of compressive failure in unidirectional carbon fibre reinforced plastics”, Royal Aircraft Technical Report 73057

    Google Scholar 

  • Gudmundson P. and Östlund S., 1992a, “Firts order analysis of stiffness reduction due to matrix cracking”, J. Composite Materials, Vol. 26, 1009–1030

    Article  Google Scholar 

  • Gudmundson P. and Östlund S., 1992b, “Thermoelastic properties of composite laminates with matrix cracks”, Composite Science and Technology, Vol. 44, 95–105

    Article  Google Scholar 

  • Gudmundson P. and Zang W., 1993, “An analytic model for thermoelastic properties of composite laminates containing transverse matrix cracks”, To appear in Int. J. Solids Structures

    Google Scholar 

  • Jones M.L.O and Hull D., 1979, “Microscopy of failure mechanisms in filament wound pipe”, J. Mater. Sci., Vol. 14, 165–174

    Article  Google Scholar 

  • Krajcinovic D., 1989, “Damage mechanics”, Mechanics of Materials, Vol. 8, 117–197

    Article  Google Scholar 

  • Nahas M.N., 1986, “Survey of failure and post-failure theories of laminated fiber-reinforced composites”, J. Composites Technology & Research, Vol. 8, 138–153

    Article  Google Scholar 

  • Nilsson K.-E, Thesken J.C., Sindelar P., Giannakopoulos A.E., Storâkers B., 1993, “A theoretical and experimental investigation of buckling induced delamination growth”, J. Mech. Phys. Solids, Vol. 41, 749–782

    Article  Google Scholar 

  • Pagano N.J. and Pipes R.B., 1971, “The influence of stacking sequence of laminate strength”, J. Composite Materials, Vol. 5, 50–57

    Article  Google Scholar 

  • Pipes R.B. and Pagano N.J., 1970, Interlaminar stresses in composite laminates under uniform axial extension”, J. Composite Materials, Vol. 4, 538–548

    Google Scholar 

  • Rice J.R., 1988, “Elastic fracture mechanics concepts for interfacial cracks”, J. Appl. Mech., Vol. 55, 98–103

    Article  Google Scholar 

  • Rosen B.W., 1965, “Mechanics of composite strengthening”, In Fibre Composite Materials, ch. 3, ASM, Metals Park, Ohio

    Google Scholar 

  • Sih G.C., Paris P.C. and Irwin G.R., 1965, “On cracks in rectilinearly anisotropic bodies”, Int. J. Fracture Mechanics, Vol. 1, 189–203

    Google Scholar 

  • Stordkers B. and Andersson B, 1988, “Nonlinear plate theory applied to delamination in composites”, J. Mech. Phys. Solids, Vol. 36, 689–718

    Article  MathSciNet  Google Scholar 

  • Suo Z. and Hutchinson J.W., 1990, “Interface crack between two elastic layers”, Int. J. Fracture Mechanics, Vol. 43, 1–18

    Article  Google Scholar 

  • Talreja R., 1985, “A continuum mechanics characterization of damage in composite materials”, Proc. Roy. Soc. London, Vol. A399, 195

    Article  MATH  Google Scholar 

  • Tsai S.W. and Wu E.M., 1971, “A general theory of strength for anisotropic materials”, J. Composite Materials, Vol. 5, 58–80

    Article  Google Scholar 

  • Whitney J.M. and Nuismer R.J., 1974, “Stress fracture criteria for laminated composites containing stress concentrations”, J. Composite Materials, Vol. 8, 253–265

    Article  Google Scholar 

  • Williams M.L., 1952, “Stress singularities resulting from various boundary conditions in angular corners of plates in extension”, J. Appl. Mech., Vol. 19, 526–528

    Google Scholar 

  • Zang W. and Gudmundson P., 1993b, “Damage evolution and thermoelastic properties of composite laminates”, Int. J. Damage Mechanics, Vol. 2, 290–308

    Article  Google Scholar 

  • Östlund S. and Gudmundson P., 1992, “Numerical analysis of matrix crack induced delaminations in (+1–55) GFRP laminates”, Composites Engineering, Vol. 2, 161–175

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Wien

About this chapter

Cite this chapter

Gudmundson, P. (1994). Fracture and Damage of Composite Laminates. In: Hult, J., Rammerstorfer, F.G. (eds) Engineering Mechanics of Fibre Reinforced Polymers and Composite Structures. International Centre for Mechanical Sciences, vol 348. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2702-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2702-5_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82652-2

  • Online ISBN: 978-3-7091-2702-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics