Skip to main content

Radiofrequency Plasma Heating and Current Drive Basic Aspects

  • Chapter
  • 231 Accesses

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 349))

Abstract

Externally produced neutral particle beams and electromagnetic (EM) fields can penetrate well inside a magnetized, fully ionized plasma across the confining magnetic field lines and produce bulk plasma heating as well as current drive. The neutral particles must be of sufficiently high speed so that they do not ionize until well inside the plasma.

Conditions for EM energy propagation across the confining magnetic field lines and absorption within the confined plasma exist over a wide range of situations compatible with a thermonuclear environment. However, they are less straightforward than in the previous case, primarily because of the subtle role played by Coulomb collisions in the long mean free path limit, concurrently with the EM wave action.

In these lectures some attention will be devoted to describing and clarifying the physical mechanisms underlying radiofrequency heating and current drive schemes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.I. Braginskii: Transport Processes in a Plasma, in: Review of Plasma Physics (Ed. M.A. Leontovich ), Consultants Bureau, Leontovich ), 1965, Vol. 1, 205.

    Google Scholar 

  2. A. Schlüter, in: Z. Naturforsch. 12a (1957), 822.

    Google Scholar 

  3. B.B. Kadomtsev and O.P. Pogutse, in: Nuclear Fusion 11 (1971), 67.

    Google Scholar 

  4. L.A. Artsimovich, in: Nuclear Fusion 12 (1972), 215.

    Google Scholar 

  5. R. Bardet, T. Consoli, R. Geller, in: Nuclear Fusion 5 (1965), 7.

    Google Scholar 

  6. C.S. Roberts and S.J. Buchsbaum, in: Phys. Rev. 135A. (1964), 381; E. Canobbio and R. Croci, in: Nonlinear Effects in RF Plasmas, Course and Workshop on Applications of RF waves to Tokamak Plasmas. (Eds. S. Bernabei et al.), Varenna (Italy) 1985, Vol. 2, 585.

    Google Scholar 

  7. T.H. Stix, in: The Theory of Plasma Waves, McGraw Hill Co. Inc., New York 1962.

    Google Scholar 

  8. V.E. Zakharov and V.I. Karpman, in: Sov. Phys.—JETP 16 (1963), 351; R.Z. Sagdeev and A.A. Galeev: Nonlinear Plasma Theory, W.A. Benjamin Inc., New York 1969.

    Google Scholar 

  9. E. Canobbio: Neoclassical Theory of Magnetic Pumping in Toroidal geometry, in: Plasma Physics and Controlled Nuclear Fusion Research, IAEA, Vienna 1971, Vol.3, 491; Nuclear Fusion 12 (1972), 561; Heating in Toroidal Plasmas, in: Proc. Int. Symp. Grenoble 1978, Vol. 2, (1978), 175.

    Google Scholar 

  10. R. Bardet et al.: Transit Time Magnetic Pumping in the Petula Tokamak, in: Plasma Physics and Controlled Nuclear Fusion Research, IAEA, Vienna 1979, Vol. 2, 545.

    Google Scholar 

  11. F. Koechlin and A. Samain, in: Phys. Rev. Lett., 26 (1971), 490; Plasma Physics, 14 (1972), 349.

    Google Scholar 

  12. E. Canobbio: A New Method of Collisionless Heating for Toroidal Plasmas involving Low—frequency Axisymmetric Pumping, in: Plasma Physics and Controlled Nuclear Fusion Research, IAEA, Vienna 1977, Vol 3, 19; Proc. 8th European Conference on Controlled Fusion and Plasma Physics, Prague 1977, Vol. 1, 161; Nuclear Fusion, 21 (1981), 759; P.L. Pritchett and E. Canobbio, in: Phys. Fluids, 24 ( 1981 ), 2374.

    Google Scholar 

  13. L.D. Landau and E.M. Lifshitz, Course of Theoretical Physics, Pergamon Press, Oxford 1981, Vol. 10.

    Google Scholar 

  14. G. Cattanei and R. Croci, in: Nuclear Fusion, 17 (1977), 239.

    Google Scholar 

  15. C.F.F. Karney, in: Phys. Fluids, 21 (1978), 1584; 22 ( 1979 ), 2188.

    Google Scholar 

  16. C.F. Kennell and F. Engelmann, in: Phys. Fluids, 9 ( 1966 ), 2377.

    Google Scholar 

  17. E. Canobbio and R. Croci, in: J. Plasma Physics, 40 (1991), 347.

    Google Scholar 

  18. E. Canobbio and R. Croci: under publication in J. Plasma Physics.

    Google Scholar 

  19. G.W. Kentwell and D.A. Jones, in: Physics Reports (Review Section of Physics Letters), 145, Na6 (1987), 319.

    Google Scholar 

  20. T.M. Antonsen and K.R. Chu, in: Phys. Fluids, 25 (1982), 1295.

    Google Scholar 

  21. N.J. Fisch, in: Rev. Mod. Phys., 59 (1987), 175.

    Google Scholar 

  22. I.B. Bernstein, in: Phys. Fluids, 18 (1975), 320; M. Brambilla and A. Cardinali, in: Plasma Physics, 24 (1982), 1187.

    Google Scholar 

  23. R. Croci and R. Saison, in: Plasma Physics, 16 (1974), 603.

    Google Scholar 

  24. W.P. Allis, S.J. Buchsbaum, A. Bers, Waves in: Anisotropic Plasmas, M.I.T. Press, Cambridge, Mass. 1963; I.B. Bernstein, S.K. Trehan, in: Nuclear Fusion, 1 (1960), 3.

    Google Scholar 

  25. T.H. Stix, in: Nuclear Fusion, 15 (1975), 737.

    Google Scholar 

  26. K.G. Budden, Radio Waves in the Ionosphere, Cambridge University Press, London 1961.

    MATH  Google Scholar 

  27. K. Hain and R. Lüst, in: Z. Naturforsch., 13a (1958), 936.

    Google Scholar 

  28. G. Cattanei, in: Nuclear Fusion, 13 (1973), 839.

    Google Scholar 

  29. I.B. Bernstein and S.K. Trehan, in: Nuclear Fusion, 1 (1960), 3.

    Google Scholar 

  30. G.M. Zaslayskii, S.S. Moiseev, R.Z. Sagdeev, in: Sov. Phys.—Doklady, 9 (1965), 863.

    Google Scholar 

  31. T.H. Stix, in: Phys. Rev. Lett., 15 (1965), 878.

    Google Scholar 

  32. C.F.F. Karney et al., in: Phys. Rev. Lett., ( 1979 ), 1621.

    Google Scholar 

  33. J. Adam et al.: Wave Generation and Heating in the ST—Tokamak at the Fundamental and Harmonic Ion Cyclotron Frequencies, in: Plasma Physics and Controlled Nuclear Fusion Research, IAEA, Vienna 1975, Vol. 1, 65; V.L. Vdovin et al., in: Int. Meeting on Heating of Toroidal Plasmas, Int. 1976, Vol. 2, 349.

    Google Scholar 

  34. A. Hasegawa and L. Chen, in: Phys. Rev. Lett., 35 (1975), 370; J.A. Tataronis and W. Grossmann, in: Nuclear Fusion, 16 (1976), 667; H. Tasso, in: Z. Naturforsch., 20a (1965), 1722.

    Google Scholar 

  35. G. Besson et al., in: Plasma Physics and Controlled Fusion 28 (1986), 1291; K. Appert, J. Vaclavik, L. Villard, in: Phys. Fluids, 27 (1984), 432.

    Google Scholar 

  36. T. Hellsten and E. Tennfors, in: Physica Scripta, 30 (1984), 341.

    Google Scholar 

  37. J. Adam, in: Plasma Physics and Controlled Fusion, 29 (1987), 443, and refs. therein; K. Steinmetz: 7th Topical Conf. on Applications of Radio—frequency Power to Plasmas, AIP Conf. Proc. 159, Kissimmee (FL), (1987), 211; J. Jacquinot et al.: ibid.

    Google Scholar 

  38. R.R. Weynants, in: Phys. Rev. Lett., 33 (1974), 78.

    Google Scholar 

  39. H. Takahashi, in: J. Phys. (Paris), Colloq. C6., (1977), 171; M. Brambilla, in: Plasma Physics and Controlled Fusion, 31 (1989), 723.

    Google Scholar 

  40. I. Fidone, G. Giruzzi, E. Mazzucato, in: Phys. Fluids, 28 (1985), 1224.

    Google Scholar 

  41. A.C. Rivière, in: Plasma Physics and Controlled Fusion 28 (1986), 1263, and refs. therein; V. Erckman et al.: ibid., 1277.

    Google Scholar 

  42. E. Canobbio and R. Croci, in: Phys. Fluids, 9 (1966), 549.

    Google Scholar 

  43. G. Landauer, in: J. Nucl. Energy C, Plasma Physics, 4 (1962), 395.

    Google Scholar 

  44. V.E. Golant, in: Soy. Phys. Tech. Phys., 16 ( 1972 ), 1980.

    Google Scholar 

  45. P. Lallia, in: Proc. 2nd Topical Conference on RF Plasma Heating, Report SR-5, Plasma Laboratory, Dept. of Electrical Engineering, Texas Tech. University, Lubbock 1974, C3.

    Google Scholar 

  46. M. Brambilla, in: Nuclear Fusion, 19 (1979), 1343.

    Google Scholar 

  47. R.J. Briggs and R.R. Parker, in: Phys. Rev. Lett., 29 (1972), 852; P.M. Bellan and M. Porkolab, in: Phys. Fluids, 17 (1974), 1592.

    Google Scholar 

  48. J.E. Stevens et al., in: Nuclear Fusion, 28 (1988), 217 and refs. therein; F. Alladio, in: 15th European Conf. on Controlled Fusion and Plasma Heating, Dubrovnik 1988, 878; see also papers on LH wave experiments by various authors in Plasma Physics and Controlled Fusion, 28 (1986).

    Google Scholar 

  49. R.S. Devoto et al., in: Nuclear Fusion, 32 (1992), 773.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Wien

About this chapter

Cite this chapter

Canobbio, E., Croci, R. (1994). Radiofrequency Plasma Heating and Current Drive Basic Aspects. In: Cap, F. (eds) Waves and Instabilities in Plasmas. CISM International Centre for Mechanical Sciences, vol 349. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2700-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2700-1_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82636-2

  • Online ISBN: 978-3-7091-2700-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics