Large Strain Static and Dynamic Hydro-Mechanical Analysis of Porous Media

  • E. A. Meroi
  • B. A. Schrefler
Part of the International Centre for Mechanical Sciences book series (CISM, volume 357)


Theoretical and computational aspects of finite strain static and dynamic behaviour of fully and partially saturated soils are dealt with in this chapter. In the numerical model developed, pressure in the gaseous phase remains equal to the external ambient pressure and soil may yield according to a generalized plasticity theory. Several examples are shown, covering both slow phenomena and dynamic analysis. A comparison between one and two phase flow models in partially saturated soil behaviour is also shown in the case of slow phenomena.


Porous Medium Shear Band Capillary Pressure Relative Permeability Void Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.H. Advani, T.S. Lee, J.H. Lee, and C.S. Kim: Hygrothermomechanical evaluation of porous media under finite deformation. Part I–Finite element formulations, Int. J. Num. Meth. Eng., 36 (1993), 147–160.CrossRefzbMATHGoogle Scholar
  2. 2.
    D.J. Bammann and G.C. Johnson: On the kinematics of finite-deformation plasticity, Acta Mech., 70 (1987), 1–13.CrossRefzbMATHGoogle Scholar
  3. 3.
    G. Bolzon, B.A. Schrefler, and O.C. Zienkiewicz: Elastoplastic soil constitutive laws generalized to partially saturated states, to appear in Géothecnics (1995).Google Scholar
  4. 4.
    J.R. Booker, The consolidation of a finite layer subject to surface loading, Int. J. Sol. Struct. 10, 1053–1065 (1974).CrossRefGoogle Scholar
  5. 5.
    R.N. Brooks and A.T. Corey: Properties of porous media affecting fluid flow, J. Irrig. Drain. Div. A,. Soc. Civ. Eng. 92 (1966), 61–68Google Scholar
  6. 6.
    J.P. Carter, J.R. Booker, and J.C. Small: The analysis of finite elasto-plastic consolidation, Int. J. Num. Anal. Meth. Geomech. 3 (1979), 107–129.CrossRefzbMATHGoogle Scholar
  7. 8.
    W.F. Cheng and Y. Tsui: Limitations to the large strain theory, Int. J. Num. Meth. Eng. 33 (1992), 101–114.CrossRefzbMATHMathSciNetGoogle Scholar
  8. 9.
    O. Coussy: Mécanique des milieux poreux, Editions Technip, Paris 1991.Google Scholar
  9. 10.
    Y.F. Dafalias: Corotational rates for kinematic hardening at large plastic deformations, J. Appl. Mech. 50 (1983), 561–565.CrossRefzbMATHGoogle Scholar
  10. 11.
    J.K. Dienes: On the analysis of rotation, stress rate in deforming bodies, Acta Mech., 32 (1979), 217–232.CrossRefzbMATHMathSciNetGoogle Scholar
  11. 12.
    D. Gawin, P. Baggio, and B.A. Schrefler, Coupled heat, water and gasflow in deformable porous media, Int. J. Num. Num. Meth. Fl., 20 (1995), 962–987.Google Scholar
  12. 13.
    M.E. Gurtin: An introduction to continuum mechanics, Academic Press, Orlando 1981.zbMATHGoogle Scholar
  13. 14.
    M. Hassanizadeh and W.G. Gray: General conservation equations for multi-phase systems: 1. Averaging procedures, Adv. Water Resources, 2 (1979), 131–144.Google Scholar
  14. 15.
    M. Hassanizadeh and W.G. Gray: General conservation equations for multi-phase systems: 2. Mass, momenta, energy, and entropy equations, Adv. Water Resources, 2 (1979), 191–201.Google Scholar
  15. 16.
    M. Hassanizadeh and W.G. Gray: General conservation equations for multi-phase systems: 3. Constitutive theory for porous media flow, Adv. Water Resources, 3 (1980), 25–40.Google Scholar
  16. 17.
    G.C. Johnson and D.J. Bammman: A discussion of stress rates in finite deformation problems, Int. J. Solids Struct., 8 (1984), 725–737.CrossRefGoogle Scholar
  17. 18.
    C.S. Kim, T.S. Lee, S.H. Advani, and J.H. Lee: Hygrothermomechanical evaluation of porous media under finite deformation: part II–model validations and field simulations, Int. J. Num. Meth. Eng., 36 (1993), 161–179.CrossRefGoogle Scholar
  18. 19.
    E.H. Lee: Elastic-plastic deformation at finite strains, J. Appl. Mech., 36 (1969), 1–6.CrossRefzbMATHGoogle Scholar
  19. 20.
    E.H. Lee: Some comments on elastic-plastic analysis, Int. J. Solids Struct., 17 (1981), 859–872.CrossRefzbMATHGoogle Scholar
  20. 21.
    R.W. Lewis and B.A. Schrefler: The finite element method in the deformation and consolidation of porous media, John Wiley zhaohuan Sons, Chichester 1987.Google Scholar
  21. 22.
    X. Li and O.C. Zienkiewicz: Multiphase flow in deforming porous media and finite element solutions, Comp. zhaohuan Struct., 45 (1992), 211–227.CrossRefzbMATHGoogle Scholar
  22. 23.
    A. Lloret, A. Gens, F. Batlle, and E.E. Alonso: Flow and deformation analysis of partially saturated soils, in: Groundwater Effects in Geotechnical Engineering (Eds. E.T. Hanrahan et al.), Rotterdam 1987, 565–568.Google Scholar
  23. 24.
    B. Loret and J.H. Prevost: Dynamic strain localization in fluid-satured porous media, J. Eng. Mech., 11 (1991), 907–922.CrossRefGoogle Scholar
  24. 25.
    V.A. Lubarda and E.H. Lee: A correct definition of elastic and plastic deformation and its computational significance, J. Appl. Mech., 48 (1981), 35–40.CrossRefzbMATHMathSciNetGoogle Scholar
  25. 26.
    L.E. Malvern: Introduction to the mechanics of a continuous medium, Prentice-Hall, Englewood Cliffs 1969.Google Scholar
  26. 27.
    R.M. McMeeking and J.R. Rice: Finite element formulations for problems of large elastic-plastic deformation, Int. J. Solids Struct. 11 (1975), 601–616.CrossRefzbMATHGoogle Scholar
  27. 28.
    E. Meroi: Comportamento non lineare per geometria di mezzi porosi parzialmente saturi, Tesi di dottorato, Istituto di Scienza e Tecnica delle Costruzioni, Università di Padova 1993.Google Scholar
  28. 29.
    E.A. Meroi, A.N. Natali, and B.A. Schrefler: A Poroelastic approach to the analysis of spinal motion segment, to appear in: Proc. Biomechanics zhaohuan Biomedical Engineering, Swansea (UK ) 1994.Google Scholar
  29. 30.
    E.A. Meroi, B.A. Schrefler, and O.C. Zienkiewicz: Large strain static and dynamic semisaturated soil behaviour, Int. J. Num. Anal. Meth. Geomech., 19 (1995), 81–106.CrossRefzbMATHGoogle Scholar
  30. 31.
    M. Mokni: Relations entre déformations en masse et déformations localisées dans les matériaux granularies, thèse de doctorat, Université J. Fourier, Grenoble I 1992.Google Scholar
  31. 32.
    F. Molenkamp: Limits to the Jaumann stress rate, Int. J. Num. Anal. Meth. Geomech., 10 (1986), 151–176.CrossRefzbMATHGoogle Scholar
  32. 33.
    M. Pastor and O.C. Zienkiewicz: A generalized plasticity, hierarchical model for sand under monotonic and cyclic loading, in: Proc. 2nd Int. Symp. Num. Models in Geomech., Ghent 1986, 131–149.Google Scholar
  33. 34.
    M. Pastor, O.C. Zienkiewicz, and A.H.C. Chan: Generalized plasticity and the modelling of soil behaviour, Int. J. Num. Anal. Meth. Geomech., 14 (1990), 151–190.CrossRefzbMATHGoogle Scholar
  34. 35.
    M. Pastor, O.C. Zienkiewicz, and K.H. Leung: Simple model for transient soil loading in earthquake analysis. II. Non-associative models for sands, Int. J. Num. Anal. Meth. Geomech. 9 (1985), 477–498.CrossRefzbMATHGoogle Scholar
  35. 36.
    N.M. Safai and G.F. Pinder, Vertical and horizontal land deformation in a desaturating porous medium, Adv. Water Resources 2 (1979), 19–25.Google Scholar
  36. 37.
    B.A. Schrefler: F.E. in environmental engineering: coupled thermo-hydromechanical processes in porous media including pollutant transport. In print in Archives of Computational Methods in Engineering 1995.Google Scholar
  37. 38.
    B.A. Schrefler, C.E. Majorana and L. Sanavia: Shear band localization in saturated porous media, to appear in Archives of Mechanics 1995.Google Scholar
  38. 39.
    B.A. Schrefler, L. Sanavia, and C.E. Majorana: Shear band localization in partially saturated porous media, Proc. NUMOG V, Davos (CH ) 1995.Google Scholar
  39. 40.
    B.A. Schrefler, L. Simoni, X. Li, and O.C. Zienkiewicz: Mechanics of partially saturated porous media, in: Numerical Methods and Constitutive Modelling in Geomechanics (eds. C.S. Desai and G. Gioda), CISM Courses and Lect. Ser. 311, Springer Verlag, New York 1990, 106–209.Google Scholar
  40. 41.
    B.A. Schrefler and X. Zhan: A fully coupled model for water flow and airflow in deformable porous media, Water Resources Research, 29 (1993), 155–167.CrossRefGoogle Scholar
  41. 42.
    Y.-M. Xie: Finite element solution and adaptive analysis for static and dynamic problems of satured-unsaturated porous media, Ph.D. thesis, Department of Civil Engineering, Swansea University 1990.Google Scholar
  42. 43.
    O.C. Zienkiewicz, A.H.C. Chan, M. Pastor, D.K. Paul, and T. Shiomi: Static and dynamic behaviour of soils: a rational approach to quantitative solutions. I–Fully saturated problems, Proc. R. Soc. Lond., A 429 (1990), 285–309.CrossRefzbMATHGoogle Scholar
  43. 44.
    O.C. Zienkiewicz, K.H. Leung and M. Pastor: Simple model for transient soil loading in earthquake analysis. I. Basic model and its application, Int. J. Num. Anal. Meth. Geomech. 9 (1985), 453–476.CrossRefzbMATHGoogle Scholar
  44. 45.
    O.C. Zienkiewicz and Z. Mroz: Generalized plasticity formulation and applications to geomechanics, in: Mechanics of Engineering Materials (Eds. C.S. Desai and R.H. Gallagher), John Wiley zhaohuan Sons, Chichester 1984, 33, 655–679.Google Scholar
  45. 46.
    O.C. Zienkiewicz and T. Shiomi: Static and dynamic behaviour of saturated porous media: the generalized Biot formulation and its numerical solution, Int. J. Num. Anal. Meth. Geomech. 8 (1984), 71–96.CrossRefzbMATHGoogle Scholar
  46. 47.
    O.C. Zienkiewicz, Y.M. Xie, B.A. Schrefler, A. Ledesma, and N. Bicanic: Static and dynamic behaviour of soils: a rational approach to quantitative solutions. II–Semi-saturated problems, Proc. R. Soc. Lond. A 429 (1990), 311–321.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 1995

Authors and Affiliations

  • E. A. Meroi
    • 1
  • B. A. Schrefler
    • 1
  1. 1.University of PaduaPaduaItaly

Personalised recommendations