Skip to main content

Dislocation Modelling of Crystalline Plasticity

  • Chapter

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 376))

Abstract

The aim of this lecture is to review some significant aspects of the dislocation modelling of the large deformation plasticity of single crystals and crystalline aggregates, by making use of an internal-variable approach.

For single-crystal plasticity, the most important internal variables are the dislocation densities on various glide planes. Their evolution is governed by balance equations involving production and annihilation rates. Dislocation interactions determine in a basically anisotropic way the slip rates and the evolution of the critical shear stresses.

Recently, dislocation-based models of continuum plasticity have been employed for the simulation of inhomogeneously deformed crystalline aggregates. Such simulations may help understanding the influence of the crystallographic mismatch across grain boundaries and of the difference in size between neighbouring grains on the heterogeneity of plastic deformation and possibly on strain localization and damage.

One of the most striking features of the microstructural organization inside the grains is that dislocations evolve towards some steady-state microstructures, provided that a sufficient amount of monotonous deformation is allowed for along the same strain path. Reversed deformation and changes in the strain path generally tend to the modification or dissolution of preformed microstructures and the formation of new ones that correspond to the last deformation mode. The lecture will focus on the attempts to model such processes and their contribution to plastic anisotropy, by means of internal variables associated to the strength and polarity of dislocation structures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hansen, N. and T. Leffers: Microstructures, textures and mechanical properties after large strain, in: Proc. Europhysics Conf. on Mechanisms and Mechanics of Plasticity (Eds. J. Castaing, J.L. Strudel and A. Zaoui), Rev. Phys. Appl., 23(1988), 491–500.

    Google Scholar 

  2. Anand, L.: Elasto-viscoplasticity: constitutive modeling and deformation processing, in: Large Plastic Deformations. Fundamentals and Applications to Metal Forming (Proc. MECAMAT’91, Eds. C. Teodosiu, F. Sidoroff and J.L. Raphanel ), Balkema, Rotterdam, 1992, 3–17.

    Google Scholar 

  3. Kocks, U.F.: Constitutive behaviour based on crystal plasticity, in: Constitutive Equations for Creep and Plasticity (Ed. A.K. Miller ), Elsevier Appl. Sci., London, 1987, 1–88.

    Chapter  Google Scholar 

  4. Teodosiu, C.: A dynamical theory of dislocations and its application to theory of the elasto-plastic continum, in: Fundamental Apects of Dislocation Theory (Eds. J.A. Simmons, R. DeWit and R. Bullough), Nat. Bur. Stand. Special Publ. 317, Washington, vol. 2, 1970, 837–876.

    Google Scholar 

  5. Mandel, J.: Plasticité classique et viscoplasticité, Lectures Notes Int. Centre for Mech. Sci. (Udine, 1971 ), Springer, Berlin, 1972.

    Google Scholar 

  6. Rice, J.R.: Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity, J. Mech. Phys. Solids, 19 (1971), 433–455.

    Article  Google Scholar 

  7. Peirce, D., R.D. Asaro and A. Needleman: Material rate dependence and localized deformation in crystalline solids, Acta Metall. 31 (1983), 1951–1976.

    Article  Google Scholar 

  8. Asaro, R.J.: Micromechanics of crystals and polycrystals, Adv. Appl. Mech., 23 (1983), 1–115.

    Google Scholar 

  9. Teodosiu, C., J.L. Raphanel and L. Tabourot: Finite element simulation of the large elastoplastic deformation of multicrystals, in: Large Plastic Deformations. Fundamentals and Applications to Metal Forming (Proc. MECAMAT’91, Eds. C. Teodosiu, F. Sidoroff and J.L. Raphanel ), Balkema, Rotterdam, 1992, 153–168.

    Google Scholar 

  10. Teodosiu, C. and F. Sidoroff: A physical theory of the finite elasto-viscoplastic behaviour of single crystals, Int. J. Engng. Sci., 14 (1976), 165–176.

    Article  Google Scholar 

  11. Franciosi, P., M. Berveiller and A. Zaoui: Latent hardening in copper and aluminium single crystals, Acta Metall., 28 (1980), 273–283.

    Article  Google Scholar 

  12. Kocks, U.F.: Constitutive behaviour based on crystal plasticity, in: Constitutive Equations for Creep and Plasticity (Ed. A.K. Miller ), Elsevier Appl. Sci., London, 1987, 1–88.

    Chapter  Google Scholar 

  13. Cailletaud, G.: Une approche micromécanique phénoménologique du comportement inélastique des métaux, Thèse de doctorat, Univ. P. et M. Curie, Paris, 1987.

    Google Scholar 

  14. Méric, L. and G. Cailletaud: Single crystal modelling for structural calculations: Part 2–Finite element implementation, J. Eng. Mat. Technol., 113 (1991), 171–182.

    Article  Google Scholar 

  15. Méric, L.: Une modélisation mécanique du comportement des monocristaux, Thèse de doctorat, Ecole Nat. Sup. Mines, Paris, 1991.

    Google Scholar 

  16. Mathur, K.K. and P.R. Dawson: On modeling the developement of crystallographic texture in bulk forming processes, Int. J. Plasticity, 5 (1989), 67–94.

    Article  Google Scholar 

  17. Mecking, H.: Untersuchung der Plastizität von Silbereinkrist-allen durch Zugverformung bei konstanten und pl6tzlich wechselnden Versuchsbedingungen, Doktorarbeit, TH Aachen, 1967.

    Google Scholar 

  18. de Rosset, W.S. and A.V. Granato, in: Proc. Conf. Fundamental Aspects of Dislocation Theory (Washington 1969, Eds. J.A. Simmons, R. deWit and R. Bullough), Nat. Bur. Stand. Spec. Publ. 317, 1970, vol. 2, 1099.

    Google Scholar 

  19. Mecking, H. and K. Lücke: Scripta Met., 4 (1970), 427.

    Article  Google Scholar 

  20. Neuhäuser, H., N. Himstedt and Ch. Schwink: Macroscopic and microscopic studies of the plastic deformation of copper single crystals during strain-rate changes, phys. stat. sol. (a), 3 (1970), 585–598, 929–937.

    Google Scholar 

  21. Siems, R.: phys. stat. sol., 30 (1968), 645.

    Google Scholar 

  22. Teodosiu, C.: Elastic Models of Crystal Defects, Springer, Berlin - Heidelberg - New York, 1982.

    Book  Google Scholar 

  23. Jassby, K.M. and T. Vreeland, Jr.: Acta Met., 20 (1972), 611.

    Google Scholar 

  24. Frost, H. J. and M.F.Ashby: J. Appl. Phys., 42 (1971), 5273.

    Google Scholar 

  25. Becker, R.: Z. Phys., 26 (1925), 919.

    Google Scholar 

  26. Kauzmann, W.: Trans. AIME, 143 (1941), 57.

    Google Scholar 

  27. Eyring, H.: J. Chem. Phys., 4 (1936), 283.

    Article  Google Scholar 

  28. Frank, W.: Z. Naturforschung, 22a (1967), 365.

    Google Scholar 

  29. Granato, A.V., K. Lücke, J. Schlipf and L.J. Teutonico: J. Appl. Phys., 35 (1964), 2732.

    Google Scholar 

  30. Gibbs, G.N.: Mater. Sci Engng., 4 (1969), 313.

    Article  Google Scholar 

  31. Foreman, A.J.E. and M.J. Makin: Dislocation movement through random array of obstacles, Phil. Mag., 14 (1966), 911.

    Article  Google Scholar 

  32. Kocks, U.F.: A statistical theory of flow stress and work-hardening, Phil. Mag., 13 (1966), 541.

    Article  Google Scholar 

  33. Forman, R.E.: Phil. Mag., 26 (1972), 553.

    Article  Google Scholar 

  34. Hornung, W.: Phys. Stat. Sol., 54 (1972), 341.

    Article  Google Scholar 

  35. Bassani, J.L.: Single crystal hardening, Appl. Mech. Rev., 43 (1990), 5320–5327.

    Google Scholar 

  36. Bassani, J.L.: Plastic flow of crystals, in: Advances in Applied Mechanics, vol. 30, 1994, 191–258.

    Google Scholar 

  37. Tabourot, L.: Loi de comportement élastoviscoplastique du monocristal en grandes transformations, Thèse de doctorat, Inst. National Polytechnique de Grenoble, 1992.

    Google Scholar 

  38. Essmann, U. and H. Mughrabi: Annihilation of dislocations during tensile and cyclic deformation and limits of dislocation densities, Phil Mag., A40(1979), 731756.

    Google Scholar 

  39. Zarka, J.: Sur la viscoplasticité des métaux, Thèse de doctorat, Ecole Polytechnique, Paris, 1968.

    Google Scholar 

  40. Franciosi, P.: Etude théorique et expérimentale du comportement élastoplastique des monocristaux se déformant par glissement: modélisation pour un chargement complexe quasi-statique, Thèse de doctorat, Univ. Paris-Nord, 1984.

    Google Scholar 

  41. Zarka, J.: Etude du comportement des monocristaux métalliques. Application à la traction du monocristal c.f.c., J. Mécanique, 12 (1973), 275–318.

    Google Scholar 

  42. Cuitino, A. and M. Ortiz: The hardening of single crystals, in: Large Plastic Deformations. Fundamentals and Applications to Metal Forming (Proc. MECAMAT’91, Eds. C. Teodosiu, F. Sidoroff and J.L. Raphanel ), Balkema, Rotterdam, 1992, 39–51.

    Google Scholar 

  43. Rey, C., P. Mussot and A. Zaoui: Effects of junction of grain boundaries on the mechanical behaviour of polycrystals, in: Grain Boundary Structure and Related Phenomena (Proc. JIMIS-4), Suppl. Trans. Japan Inst. Metals, 1986, 867–874.

    Google Scholar 

  44. Rey, C.: Effects of grain boundaries on the mechanical behaviour of grains in polycrystals, in: Proc. Europhysics Conf. on Mechanisms and Mechanics of Plasticity (Eds. J. Castaing, J.L. Strudel and A. Zaoui), Rev. Phys. Appl., 23(1988), 491–500.

    Google Scholar 

  45. Ohashi, T.: Computer simulation of non-uniform multiple slip in face centred cubic bicrystals, Trans. Japan Inst. Metals, 28 (1987), 906–915.

    Google Scholar 

  46. Harren, S.V. and R.J. Asaro: Nonuniform deformations in polycrystals and aspects of the validity of the Taylor model, J. Mech. Phys. Solids, 37 (1989), 191–232.

    Article  Google Scholar 

  47. Havlicek, F., J. Kratochvil, M. Tokuda and V. Lev: Finite element model of plastically deformed multicrystal, Int. J. Plasticity, 6 (1990), 281–291.

    Article  Google Scholar 

  48. Mussot, P.: Private communication, 1990.

    Google Scholar 

  49. Kuhlmann-Wilsdorf, K.: Theory of plastic deformation: properties of low energy dislocation structures, Mater. Sci. Engng., A113 (1989), 1–41.

    Article  Google Scholar 

  50. Bay, B., N. Hansen, D.A.Hughes and D. Kuhlmann-Wilsdorf: Evolution of f.c.c. deformation structures in polyslips, Acta Metall., 40 (1992), 205–219.

    Article  Google Scholar 

  51. Rauch, E.F. and S. Thuillier: Rheological behaviour of mild steel under monotonic loading conditions and cross-loading, Mater. Sci. Engng., A164 (1993), 255–259.

    Article  Google Scholar 

  52. Thuillier, S. and E.F. Rauch: Development of microbands in mild steel during cross loading, Acta metall. mater., 42 (1994), 1973–1983.

    Article  Google Scholar 

  53. Steeds, J.W.: Dislocation arrangement in copper single crystals as a function of strain, Proc. Roy. Soc., A 292 (1966), 343–372.

    Article  Google Scholar 

  54. Kocks, U.F., T. Hasegawa and R.O. Scattergood: On the origin of cell walls of lattice misorentations during deformation, Scripta Metall., 14 (1980), 449.

    Article  Google Scholar 

  55. Fernandes, J.V. and J.H. Schmitt: Dislocation microstructures in steel during deep drawing, Phil. Mag., A48 (1983), 841–870.

    Article  Google Scholar 

  56. Rauch, E.F. and J.H. Schmitt: Dislocation substructures in mild steel deformed in simple shear, Mater. Sci. Engng. A113 (1989), 441–448.

    Article  Google Scholar 

  57. Rauch, E.: The flow law of mild steel under monotonic or complex strain path, in: Non-linear Phenomena in Materials Science II (Eds. G. Martin and L. Kubin), Solid State Phenomena, 23–24(1992), 317–334.

    Google Scholar 

  58. Hu, Z., E. Rauch and C. Teodosiu: Work-hardening behaviour of mild steel under stress at large strains, Int. J. Plasticity, 8 (1992), 839–856.

    Article  Google Scholar 

  59. Hasegawa, T. and T. Yakou: Region of constant flow stress during compression of aluminium polycrystals prestrained by tension, Scripta Metall., 8 (1974), 951–954.

    Article  Google Scholar 

  60. Hasegawa, T., T. Yakou and S. Karashima: Deformation behaviour and dislocation structures upon stress reversal in polycrystalline aluminium, Mater. Sci. Engrg., A20 (1975), 267–276.

    Article  Google Scholar 

  61. Rauch, E.: Stress reversal tests imposed by shear on mild steel, in: Proc. ICSMA9 (Eds, G. Brandon, R. Shaim and A. Rosen), Freund Publ. House, London, vol. 1, 1991, 187–194.

    Google Scholar 

  62. Hu, Z.: Work-hardening behaviour of mild steel under cyclic deformation at finite strains, Acta metall. mater., 42 (1994), 3481–3491.

    Article  Google Scholar 

  63. Schmitt, J.H., E. Aernoudt and B. Baudelet: Yield loci for polycrystalline metals without texture, Mater. Sci. Engng., 75 (1985), 13–20.

    Article  Google Scholar 

  64. Bacroix, B., P. Genevois and C. Teodosiu: Plastic anisotropy in low carbon steels subjected to simple shear with strain path changes, European J. Mech. A/Solids, 13 (1994), 661–675.

    Google Scholar 

  65. Hu, Z. and C. Teodosiu, C.: Anisotropic work-hardening induced by microstructural evolution under strain-path changes at large strains (to be published).

    Google Scholar 

  66. Mandel, J.: Définition d’un repère privilégié pour l’étude des transformations anélastiques du polycristal, J. Méc. Théor. Appl., 1 (1982), 7–23.

    Google Scholar 

  67. Teodosiu, C.: The plastic spin: microstructural origin and computational significance, in: Computational Plasticity: Models, Software and Applications (Eds. D.R.J. Oden, E. Hinton and E. Onate), Pineridge Press, Swansea, U. K., vol. 1, 1989, 163–175.

    Google Scholar 

  68. Teodosiu, C. and Z. Hu: Evolution of the intragranular microstructure at moderate and large strains: Modelling and computational significance, in: Simulation of Materials Processing: Theory, Methods and Applications (Proc. of NUMIFORM’95, Ithaca, USA, Eds. Shan-Fu Shen and P. Dawson ), Balkema, Rotterdam, 1995, 173–182.

    Google Scholar 

  69. Juul Jensen, D. and N. Hansen: Relations between texture and flow stress in commercially pure aluminium, in: Constitutive Relations and their Physical Basis (8th Riso Int. Symp. on Metallurgy and Mat. Sci., Eds. S.I. Andersen et al.), Riso-Nat. Lab., Roskilde, 1987, 353–360.

    Google Scholar 

  70. Raphanel, J.L., J.H. Schmitt and B. Baudelet: Plastic behavior of prestrained materials: experiments and analysis through a simple model, in: Constitutive Relations and their Physical Basis (8th Riso Int. Symp. on Metallurgy and Mat. Sci., Eds. S.I. Andersen et al.), Riso Nat. Lab., Roskilde, 1987, 491–496.

    Google Scholar 

  71. Nes, E., W.B. Hutchinson, and A.A. Ridha: On the formation of microbands during plastic straining of metals, in: Proc. ICSMA 7 (Eds. H.J. McQueen et al.), Pergamon Press, New York, 1985, 57–62.

    Google Scholar 

  72. Juul Jensen, D. and V. Hansen: Flow stress anisotropy in aluminium, Acta metall. mater., 38 (1990), 1369–1380.

    Article  Google Scholar 

  73. Genevois, P.: Etude expérimentale et modélisation du comportement plastique anisotrope des tôles d’acier en grandes transformations, Thèse de doctorat, Inst. National Polytechnique de Grenoble, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Wien

About this chapter

Cite this chapter

Teodosiu, C. (1997). Dislocation Modelling of Crystalline Plasticity. In: Teodosiu, C. (eds) Large Plastic Deformation of Crystalline Aggregates. International Centre for Mechanical Sciences, vol 376. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2672-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2672-1_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82909-7

  • Online ISBN: 978-3-7091-2672-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics