Machine Learning and Case-Based Reasoning: Their Potential Role in Preventing the Outbreak of Wars or in Ending Them

  • R. Trappl
  • J. Fürnkranz
  • J. Petrak
  • J. Bercovitch
Part of the International Centre for Mechanical Sciences book series (CISM, volume 382)


In a current project we investigate the potential contribution of Artificial Intelligence for the avoidance and termination of crises and wars. This paper reports some results obtained by analyzing international conflict databases using machine learning and case-based reasoning techniques.


Predictive Accuracy Mode Prediction Conflict Management International Conflict Inductive Logic Programming 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Azar, E. E. (1980). The conflict and peace data bank (COPDAB) project. Journal of Conflict Resolution, 24(1), 143–152.Google Scholar
  2. Bercovitch, J., Houston, A. (1993). Influence of mediation characteristics and behavior on the success of mediation in international relations. The International Journal of Conflict Management, 4 (4), 297–321.CrossRefGoogle Scholar
  3. Bercovitch, J., Lamare, J. W. (1993). The process of international mediation: An analysis of the determinants of successful and unsuccessful outcomes. Australian Journal of Political Science, 28, 290–305.CrossRefGoogle Scholar
  4. Bercovitch, J., Langley, J. (1993). The nature of dispute and the effectiveness of international mediation. Journal of Conflict Resolution,. 97 (4), 670–691.CrossRefGoogle Scholar
  5. Bercovitch, J., Wells, R. (1993). Evaluating mediation strategies–a theoretical and empirical analysis. Peace, Change, 18(1), 3–25.Google Scholar
  6. Bond, D., Bennet, B., Voegele, W. B. (1994). Panda: Interaction events data development using automated human coding.. Extended Version of a paper presented at the 1994 Annual Meeting of the International Studies Association in Washington, DC on April 1st, 1994.Google Scholar
  7. Brecher, M., Wilkenfeld, J., Moser, S. (1988). Crises in the Twentieth Century - Handbook of International Crises, Vol. I. Pergamon Press, Oxford.Google Scholar
  8. Butterworth, R. L. (1976). Managing Interstate Conflict, 1945–74: Data with Synopses. University of Pittsburgh Center for International Studies, Pittsburgh.Google Scholar
  9. Fürnkranz, J., Petrak, J., Trappl, R. (1997). Knowledge discovery in international conflict databases. Applied Artificial Intelligence, 11(2), 91–118.Google Scholar
  10. Gantzel, K. J., Meyer-Stamer, J. (Eds.). (1986). Die Kriege nach dem. weiten Weltkrieg bis 1984. München.Google Scholar
  11. Gochman, C. S., Maoz, Z. (1984). Militarized interstate disputes 1816–1976: Procedures, patterns, and insights. Journal of Conflict Resolution, 28, 585–616.CrossRefGoogle Scholar
  12. Holsti, K. J. (1983). International Politics: A Framework for Analysis (2nd edition). Englewood Cliffs.Google Scholar
  13. Hudson, V. M. (1991). Artificial Intelligence and International Politics. West-view Press, Boulder, CO.Google Scholar
  14. John, G. H., Kohavi, R., Pfleger, K. (1994). Irrelevant features and the subset selection problem. In Cohen, W., Hirsh, H. (Eds.), Proceedings of the 11th International Conference on Machine Learning (ML-94), pp. 121–129 New Brunswick, NJ. Morgan Kaufmann.Google Scholar
  15. Kohavi, R., John, G., Manley, D., Pfleger, K. (1994). MLC++: A machine learning library in C++.. In Tools with Artificial Intelligence. IEEE Computer Society Press.Google Scholar
  16. Kononenko, I., Bratko, I. (1991). Information-based evaluation criterion for classifier’s performance. Machine Learning, 6, 67–80.Google Scholar
  17. Mallery, J. C. (1988). Thinking about foreign policy: Finding an appropriate role for artificial intelligence computers. Master’s thesis, M. I. T. Political Science Department, Cambridge, MA.Google Scholar
  18. Mallery, J. C., Sherman, F. L. (1993). Learning historical rules of major power intervention in the post-war international system.. Paper prepared for presentation at the 1993 Annual Meeting of the International Studies Association.Google Scholar
  19. Petrak, J. (1994). VIE-CBR - Vienna case-based reasoning tool, version 1.0: Programmer’s and installation manual. Technical report TR-94–34, Austrian Research Institute for Artificial Intelligence, Vienna. Available from– Scholar
  20. Petrak, J., Trapp’, R., Fürnkranz, J. (1994). The possible contribution of AI to the avoidance of crises and wars: Using CBR methods with the KOSIMO database of conflicts. Technical report TR-94–32, Austrian Research Institute for Artificial Intelligence, Vienna. Available from– Scholar
  21. Pfetsch, F. R., Billing, P. (1994). Datenhandbuch nationaler und internationaler Konflikte. Nomos Verlagsgesellschaft, Baden-Baden.Google Scholar
  22. Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, CA.Google Scholar
  23. Schrodt, P. A. (1991a). Artificial intelligence and international relations: An overview. In (Hudson, 1991 ).Google Scholar
  24. Schrodt, P. A. (1991b). Classification of interstate conflict outcomes using a bootstrapped ID3 algorithm. Political Analysis.Google Scholar
  25. Schrodt, P. A. (1996). Patterns, Rules and Learning: Computational Models of International Behavior. University of Michigan Press. Forthcoming.Google Scholar
  26. Schrodt, P. A., Davis, S. G. (1994). Techniques and troubles in the machine coding of international event data. Dept. of Political Science, University of Kansas. Paper presented at the 1994 meeting of the International Studies Association, Washington DC.Google Scholar
  27. Sherman, F. L. (1988). Sherfacs: A new cross-paradigm, international conflict dataset.. Paper written for presentation at the 1988 annual meeting of the International Studies Association.Google Scholar
  28. Trappl, R. (1986). Reducing international tension through artificial intelligence: A proposal for 3 projects. In Trappl, R. (Ed.), Power, Autonomy, Utopia: New Approaches Toward Complex Systems. Plenum, New York.CrossRefGoogle Scholar
  29. Trappl, R. (1992). The role of artificial intelligence in the avoidance of war. In Trappl, R. (Ed.), Cybernetics and Systems ‘82, pp. 1667–1672 Singapore. World Scientific.Google Scholar
  30. Unseld, S. D., Mallery, J. C. (1993). Interaction detection in complex data-models.. MIT A.I. Memo No. 1298.Google Scholar
  31. Vogele, W. B. (1994). Global conflict profiles: Event data analysis using panda.. Paper prepared for presentation at the annual meeting of the American Political Science Association, New York City, Sep. 1994.Google Scholar
  32. Wilkenfeld, J., Brecher, M., Moser, S. (1988). Crises in the Twentieth Century - Handbook of Foreign Policy Crises, Vol. II. Pergamon Press, Oxford.Google Scholar

Copyright information

© Springer-Verlag Wien 1997

Authors and Affiliations

  • R. Trappl
    • 1
    • 2
  • J. Fürnkranz
    • 2
  • J. Petrak
    • 2
  • J. Bercovitch
    • 3
  1. 1.University of ViennaViennaAustria
  2. 2.Austrian Research Institute for Artificial IntelligenceViennaAustria
  3. 3.University of CanterburyChristchurchNew Zeland

Personalised recommendations