Skip to main content

Fractional Calculus

Some Basic Problems in Continuum and Statistical Mechanics

  • Chapter
Fractals and Fractional Calculus in Continuum Mechanics

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 378))

Abstract

We review some applications of fractional calculus developed by the author (partly in collaboration with others) to treat some basic problems in continuum and statistical mechanics. The problems in continuum mechanics concern mathematical modelling of viscoelastic bodies (§1), and unsteady motion of a particle in a viscous fluid, i.e. the Basset problem (§2). In the former analysis fractional calculus leads us to introduce intermediate models of viscoelasticity which generalize the classical spring-dashpot models. The latter analysis leads us to introduce a hydrodynamic model suitable to revisit in §3 the classical theory of the Brownian motion, which is a relevant topic in statistical mechanics. By the tools of fractional calculus we explain the long tails in the velocity correlation and in the displacement variance. In §4 we consider the fractional diffusion-wave equation, which is obtained from the classical diffusion equation by replacing the first-order time derivative by a fractional derivative of order α with 0 < α < 2. Our analysis leads us to express the fundamental solutions (the Green functions) in terms of two interrelated auxiliary functions in the similarity variable, which turn out to be of Wright type (see Appendix), and to distinguish slow-diffusion processes (0 < α < 1) from intermediate processes (1 < α < 2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gross, B.: Mathematical Structure of the Theories of Viscoelasticity, Hermann, Paris, 1953.

    MATH  Google Scholar 

  2. Bland, D.R.: The Theory of Linear Viscoelasticity, Pergamon, Oxford 1960.

    MATH  Google Scholar 

  3. Caputo, M. and F. Mainardi: Linear models of dissipation in anelastic solids, Riv. Nuovo Cimento (Ser. II ), 1 (1971), 161–198.

    Google Scholar 

  4. Christensen, R.M.: Theory of Viscoelasticity, Academic Press, New York 1982.

    Google Scholar 

  5. Pipkin, A.C.: Lectures on Viscoelastic Theory, Springer Verlag, New York 1986.

    Google Scholar 

  6. Berg, C. and G. Forst: Potential Theory on Locally Compact Abelian Groups,Springer Verlag, Berlin 1975, §9., pp. 61–72.

    Google Scholar 

  7. Zener, C.M.: Elasticity and Anelasticity of Metals, Chicago University Press, Chicago 1948.

    Google Scholar 

  8. Gorenflo, R. and F. Mainardi: Fractional calculus: integral and differential equations of fractional order, in Fractals and Fractional Calculus in Continuum Mechanics (Ed. A. Carpintefi and F. Mainardi), Springer Verlag, Wien 1997, this book.

    Google Scholar 

  9. Scott-Blair, G.W.: Survey of General and Applied Rheology, Pitman, London 1949.

    Google Scholar 

  10. Caputo, M. and F. Mainardi: A new dissipation model based on memory mechanism, Pure and Appl. Geophys., 91 (1971), 134–147.

    Google Scholar 

  11. Gemant, A.: On fractional differentials, Phil. Mag. [Ser. 7], 25 (1938), 540–549.

    Google Scholar 

  12. Gemant, A.: Frictional Phenomena, Chemical Publ. Co, Brooklyn N.Y. 1950.

    Google Scholar 

  13. Scott-Blair, G.W. and J.E. Caffy: An application of the theory of quasi-properties to the treatment of anomalous stress-strain relations, Phil. Mag. [Ser. 7], 40 (1949), 80–94.

    Google Scholar 

  14. Rabotnov, Yu.N.: Equilibrium of an elastic medium with after effect, Prikl. Matem. i Mekh., 12 (1948), 81–91. [in Russian]

    Google Scholar 

  15. Rabotnov, Yu.N.: Elements of Hereditary Solid Mechanics, MIR, Moscow 1980.

    MATH  Google Scholar 

  16. Meshkov, S.I. and Yu.A. Rossikhin: Sound wave propagation in a viscoelastic medium whose hereditary properties are determined by weakly singular kernels, in Waves in Inelastic Media (Ed. Yu.N. Rabotnov ), Kishinev 1970, 162–172. [in Russian]

    Google Scholar 

  17. Lokshin, A.A. and Yu.V. Suvorova: Mathematical Theory of Wave Propagation in Media with Memory, Moscow University Press, Moscow 1982. [in Russian]

    MATH  Google Scholar 

  18. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent, Annali di Geofisica, 19 (1966), 383–393.

    Google Scholar 

  19. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent, Part IL, Geophys. J. R. Astr. Soc., 13 (1967), 529–539.

    Google Scholar 

  20. Caputo, M.: Elasticità e Dissipazione, Zanichelli, Bologna 1969.

    Google Scholar 

  21. Caputo, M.: Vibrations of an infinite viscoelastic layer with a dissipative memory, J. Acoust. Soc. Am., 56 (1974), 897–904.

    MATH  Google Scholar 

  22. Caputo, M.: A model for the fatigue in elastic materials with frequency independent Q, J. Acoust. Soc. Am., 66 (1979), 176–179.

    Google Scholar 

  23. Caputo, M: Generalized rheology and geophysical consequences, Tectonophysics, 116 (1985), 163–172.

    Google Scholar 

  24. Caputo, M.: Modern rheology and electric indution: multivalued index of refraction, splitting of eigenvalues and fatigues, Annali di Geofisica, 39 (1996), 941–966.

    Google Scholar 

  25. Mainardi, F. and E. Bonetti: The application of real-order derivatives in linear viscoelasticity, Rheol. Acta, 26 Suppl. (1988), 64–67.

    Google Scholar 

  26. Mainardi, F.: Fractional relaxation in anelastic solids, J. Alloys and Compounds, 211/212 (1994), 534–538.

    Google Scholar 

  27. Smith, W. and H. de Vries: Rheological models contaaining fractional derivatives, Rheol. Acta, 9 (1970), 525–534.

    Google Scholar 

  28. Scarpi, G.B.: Sui modelli reologici intermedi per liquidi viscoelastici, Atti Accademia Scienze Torino, Classe Sci. fis. mat. nat., 107 (1973), 239–243.

    MATH  Google Scholar 

  29. Stiassnie, M.: On the application of fractional calculus for the formulation of viscoelastic models, Appl. Math. Modelling, 3 (1979), 300–302.

    MATH  Google Scholar 

  30. Bagley, R.L. and P.J. Torvik: A generalized derivative model for an elastomer damper, Shock Vib. Bull., 49 (1979), 135–143.

    Google Scholar 

  31. Bagley, R.L. and P.J. Torvik: A theoretical basis for the application of fractional calculus, J. Rheology, 27 (1983), 201–210.

    MATH  Google Scholar 

  32. Torvik, P.J. and R.L. Bagley: On the appearance of the fractional derivatives in the behavior of real materials, J. Appl. Mech., 51 (1984), 294–298.

    MATH  Google Scholar 

  33. Bagley R.L. and P.J. Torvik: On the fractional calculus model of viscoelastic behavior, J. Rheology, 30 (1986), 133–155.

    MATH  Google Scholar 

  34. Rogers, L.: Operator and fractional derivatives for viscoelastic constitutive equations, J. Rheology, 27 (1983), 351–372.

    MATH  Google Scholar 

  35. Koeller, R.C.: Applications of fractional calculus to the theory of viscoelasticity, J. Appl. Mech., 51 (1984), 299–307.

    MATH  MathSciNet  Google Scholar 

  36. Koeller, R.C.: Polynomial operators, Stieltjes convolution and fractional calculus in hereditary mechanics, Acta Mech., 58 (1986), 251–264.

    MATH  MathSciNet  Google Scholar 

  37. Koh, C.G. and J.M. Kelly: Application of fractional derivatives to seismic analysis of base-isolated models, Earthquake Engineering and Structural Dynamics, 19 (1990), 229–241.

    Google Scholar 

  38. Friedrich, C.: Mechanical stress relaxation in polymers: fractional integral model versus fractional differential model, J. Non-Newtonian Fluid Mech., 46 (1993), 307–314.

    MATH  Google Scholar 

  39. Nonnenmacher, T.F. and W.G. Glöckle: A fractional model for mechanical stress relaxation, Phil. Mag. Lett., 64 (1991), 89–93.

    Google Scholar 

  40. Glöckle, W.G. and T.F. Nonnenmacher: Fractional relaxation and the time-temperature superposition principle, Reol. Acta, 33 (1994) 337–343.

    Google Scholar 

  41. Makris, N. and M.C. Constantinou: Models of viscoelasticity with complex-order derivatives, J. Eng. Mech., 119 (1993), 1453–1464.

    Google Scholar 

  42. Heymans, N. and J.-C. Bauwens: Fractal rheological models and fractional differential equations for viscoelastic behavior, Rheologica Acta, 33 (1994), 219–219.

    Google Scholar 

  43. Schiessel, H., Metzler, R., Blumen, A. and T.F. Nonnenmacher: Generalized viscoelastic models: their fractional equations with solutions, J. Physics A: Math. Gen., 28 (1995), 6567–6584.

    MATH  Google Scholar 

  44. Gaul, L., Klein, P. and S. Kempfle: Damping description involving fractional operators, Mechanical Systems and Signal Processing, 5 (1989), 81–88.

    Google Scholar 

  45. Beyer, H. and S. Kempfle: Definition of physically consistent damping laws with fractional derivatives, ZAMM, 75 (1995), 623–635.

    MATH  MathSciNet  Google Scholar 

  46. Fenander, A.: Modal synthesis when modelling damping by use of fractional derivatives, AIAA Journal, 34 (1996), 1051–1058.

    MATH  Google Scholar 

  47. Pritz, T.: Analysis of four-parameter fractional derivative model of real solid materials, J. Sounds Vibr., 195 (1996), 103–115.

    MATH  Google Scholar 

  48. Rossikhin, Yu.A. and M.V.. Shitikova: Applications of fractional calculus to dy- namic problem; of linear and non linear hereditary mechanics of solids, Appl. Mech. Rev., 50 (1997), 16–67.

    Google Scholar 

  49. Rossikhin, Yu.A., Shitikova, M.V. and M.A. Kolesnikov: Impact of two independent fractional parameters upon the damping properties of hereditarily elastic single-mass systems, J. Vibr. Control (1997), submitted.

    Google Scholar 

  50. Lion, A.: On the thermodynamics of fractional damping elements within the framework of rheological models, Continnum Mechanics & Thermodynamcis (1997), in press.

    Google Scholar 

  51. Boussinsesq, J.: Sur la résistance qu’oppose un liquid indéfini en repos, san pesanteur, au mouvement varié d’une sphère solide qu’il mouille sur toute sa surface, quand les vitesses restent bien continues et assez faibles pour que leurs carrés et produits soient négligeables, C.R. Acad. Paris, 100 (1885), 935–937.

    Google Scholar 

  52. Basset, A. B.: A Treatise on Hydrodynamics,Vol.2, Deighton Bell, Cambridge 1888, Chap. 22.

    Google Scholar 

  53. Stokes, G.G.: On the effect of the internal friction of fluids on the motion of pendulums, Cambridge Phil. Trans., 9, [8] (1851), reprinted in Mathematical and Physical Papers, Vol. III, pp. 1–141, Cambridge Univ. Press, 1922.

    Google Scholar 

  54. Picciati, G.: Sul moto di una sfera in un liquido viscoso, Rend. R. Acc. Naz. Lincei (ser. 5), 16 (1907), 943–951. [1-st sem.]

    Google Scholar 

  55. Boggio, T.: Integrazione dell’equazione funzionale the regge la caduta di.una sfera in un liquido viscoso, Rend. R. Acc. Naz. Lincei (ser. 5), 16 (1907), 613–620, 730–737. [2-nd sem.]

    MATH  Google Scholar 

  56. Basset, A.B.: On the descent of a sphere in a viscous liquid“, Quart. J. Math, 41, 369–381 (1910).

    MATH  Google Scholar 

  57. Hughes, R.R. and E.R. Gilliand: The mechanics of drops, Chem. Engng. Progress, 48 (1952), 497–504.

    Google Scholar 

  58. Odar, F. and W.S. Hamilton: Forces on a sphere accelerating in a viscous fluid, J. Fluid Mech., 18 (1964), 302–314.

    MATH  Google Scholar 

  59. Odar, F.: Verification of the proposed equation for calculation of forces on a sphere accelerating in a viscous fluid, J. Fluid Mech., 25 (1966), 591–592.

    Google Scholar 

  60. Maxey, M.R. and J.J. Riley: Equation of motion for a small rigid sphere in a nonuniform flow, Phys. Fluids, 26 (1983), 883–889.

    MATH  Google Scholar 

  61. McKee, S. and A. Stokes: Product integration methods for the nonlinear Basset equation, SIAM J. Numer. Anal., 20 (1983), 143–160.

    MATH  MathSciNet  Google Scholar 

  62. Reeks, M.V. and S. McKee: The dispersive effects of Basset history forces on particle motion in a turbulent flow, Phys. Fluids, 27 (1984), 1573–1582.

    MATH  Google Scholar 

  63. Lovalenti, P.M. and J.F. Brady: The hydrodynamic force on a rigid particle undergoing arbitrary time-dependent motion at small Reynolds number, J. Fluid Mech., 256 (1993), 561–605.

    MATH  MathSciNet  Google Scholar 

  64. Mei, R.: History forces on a sphere due to a step change in the free-stream velocity, Int. J. Multiphase Flow, 19 (1993), 509–525.

    MATH  Google Scholar 

  65. Lawrence, C.J. and R. Mei: Long-time behaviour of the drag on a body in impulsive motion, J. Fluid. Mech., 283 (1995), 307–327.

    MATH  MathSciNet  Google Scholar 

  66. Lovalenti, P.M. and J.F. Brady: The temporal behaviour of the hydrodynamic force on a body in response to an abrupt change in velocity at small but finite Reynolds number, J. Fluid Mech., 293 (1995), 35–46.

    MATH  Google Scholar 

  67. Mainardi, F., Pironi, P. and F. Tampieri: On a generalization of the Basset problem via fractional calculus, in Proceedings CANCAM 95 (Eds. Tabarrok, B and S. Dost), Vol. II (1995), 836–837. [15-th Canadian Congress of Applied Mechanics, Victoria, British Columbia, Canada, 28 May - 2 June 19951.

    Google Scholar 

  68. Mainardi, F., Pironi, P. and F. Tampieri: A numerical approach to the generalized Basset problem for a sphere accelerating in a viscous fluid, in Proceedings CFD 95 (Eds. Thibault, P. A. and D.M. Bergeron), Vol. II (1995) 105–112. [3-rd Annual Conference of the Computational Fluid Dynamics Society of Canada, Banff, Alberta, Canada, 25–27 June 19951.

    Google Scholar 

  69. Tatom, F.B.: The Basset term as a semiderivative, Appl. Sci. Res.,45 (1988) 283–285.

    Google Scholar 

  70. Wax, N. (Ed.): Selected Papers on Noise and Stochastic Processes, Dover, New-York 1954.

    MATH  Google Scholar 

  71. Fox, R.F. and G.E. Uhlenbeck: Contributions to non-equilibrium thermodynamics. I. Theory of hydrodynamical fluctuations, Phys. Fluids, 13 (1970), 1893–1902

    MATH  MathSciNet  Google Scholar 

  72. Fox, R.F.: Gaussian Stochastic Processes in Physics, Physics Reports, 48 (1978), 179–283.

    Google Scholar 

  73. Kubo, R., Toda, M., and N. Hashitsume: Statistical Physics II, Nonequilibrium Statistical Mechanics, Springer Verlag, Berlin 1991.

    Google Scholar 

  74. Alder, B.J. and T.E. Wainwright: Decay of velocity autocorrelation function, Phys. Rev. A, 1 (1970), 18–21.

    Google Scholar 

  75. Ernst, M.H., Hauge, E.H. and J.M.J. Leenwen: Asymptotic time behavior of correlation functions, Phys. Rev. Lett., 25 (1970), 1254–1256

    Google Scholar 

  76. Dorfman, J.R. and E.G. Cohen: Velocity correlation functions in two and three dimensions, Phys. Rev. Lett., 25 (1970), 1257–1260

    Google Scholar 

  77. Zwanzig, R. and M. Bixon: Hydrodynamic theory of the velocity correlation function, Phys. Rev. A, 2 (1970), 2005–2012.

    Google Scholar 

  78. Kawasaki, K.: Long time behavior of the velocity autocorrelation function Phys. Lett., 32A (1971), 379–380.

    Google Scholar 

  79. Widom, A.: Velocity fluctuations of a hard-core Brownian particle, Phys. Rev. A, 3 (1971), 1394–1396.

    Google Scholar 

  80. Case, K.M.: Velocity fluctuations of a body in a fluid, Phys. Fluids, 14 (1971), 2091–2095.

    MATH  Google Scholar 

  81. Mazo, R.M.: Theory of Brownian motion IV; a hydrodynamic model for the friction factor, J. Chem. Phys., 54 (1971), 3712–3713.

    Google Scholar 

  82. Nelkin, M.: Inertial effects in motion driven by hydrodynamic fluctuations, Phys. Fluids, 15 (1972), 1685–1690.

    MATH  Google Scholar 

  83. Chow, Y.S. and J.J. Hermans: Effect of inertia on the Brownian motion of rigid particles in a viscous fluid, J. Chem. Phys., 56 (1972), 3150–3154.

    Google Scholar 

  84. Hynes, J.T.: On hydrodynamic models for Brownian motion, J. Chem. Phys., 57 (1972), 5612–5613.

    Google Scholar 

  85. Pomeau, Y.: Low-frequency behavior of transport coefficients in fluids, Phys. Rev. A, 5 (1972), 2569–2587.

    Google Scholar 

  86. Keizer, J.: Comment on effect of inertia on Brownian motion, J. Chem. Phys., 58 (1973), 824–825.

    Google Scholar 

  87. Davis, H.T. and G. Subramian: Velocity fluctuation of a Brownian particle: Widom’s model J. Chem. Phys., 58 (1973), 5167–5168.

    Google Scholar 

  88. Hauge, E.H. and A. Martin-Löf: Fluctuating hydrodynamics and Brownian motion, J. Stat. Phys., 7 (1973), 259–281.

    MATH  Google Scholar 

  89. Dufty, J.W.: Gaussian model for fluctuation of a Brownian particle, Phys. Fluids, 17 (1974), 328–333.

    MathSciNet  Google Scholar 

  90. Szu H.H., Szu, S.C. and J.J. Hermans: Fluctuation-dissipation theorems on the basis of hydrodynamic propagators, Phys. Fluids, 17 (1974), 903–907.

    MATH  MathSciNet  Google Scholar 

  91. Bedeaux, D. and P. Mazur: Brownian motion and fluctuating hydrodynamics, Physica, 76 (1974) 247–258.

    MathSciNet  Google Scholar 

  92. Hinch, E.J.: Applications of the Langevin equation to fluid suspension, J. Fluid. Mech., 72 (1975), 499–511.

    MATH  MathSciNet  Google Scholar 

  93. Y. Pomeau and P. Résibois: Time dependent correllation functions and mode-mode coupling theories, Physics Reports, 19 (1975), 63–139.

    Google Scholar 

  94. Warner, M.: The long-time fluctuations of a Brownian sphere, J. Phys. A: Math. Gen., 12 (1979), 1511–1519.

    Google Scholar 

  95. Paul, G.L. and P.N. Pusey: Observation of a long-time tail in Brownian motion, J. Phys. A: Math. Gen., 14 (1981), 3301–3327.

    Google Scholar 

  96. Reichl, L.E.: Translation Brownian motion in a fluid with internal degrees of freedom, Phys. Rev., 24 (1981), 1609–1616.

    MathSciNet  Google Scholar 

  97. Clercx, H.J.H. and P.P.J.M. Schram: Brownian particles in shear flow and harmonic potentials: a study of long-time tails, Phys. Rev. A, 46 (1992), 1942–1950.

    MathSciNet  Google Scholar 

  98. Muralidhar, R., Ramkrishna. D., Nakanishi, H., and D.J. Jacobs: Anomalous diffusion: a dynamic perspective, Physica A, 167 (1990), 539–559.

    Google Scholar 

  99. Bouchaud, J.-P. and A. Georges: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications, Physics Reports, 195 (1990), 127–293.

    MathSciNet  Google Scholar 

  100. Wang, K.C.: Long-time correlation effects and biased anomalous diffusion, Phys. Rev. A, 45 (1992), 833–837.

    Google Scholar 

  101. Giona, M. and H.E. Roman: Fractional diffusion equation for transport phenomena in random media, Physica A, 185 (1992), 82–97.

    Google Scholar 

  102. Metzler, R., Glöckle, W.G. and T.F. Nonnenmacher: Fractional model equation for anomalous diffusion, Physica A, 211 (1994), 13–24.

    Google Scholar 

  103. Kubo, R.: The fluctuation-dissipation theorem, Rep. on Progress in Physics, 29 (1966), 255–284.

    Google Scholar 

  104. Felderhof, B.U.: On the derivation of the fluctuation-dissipation theorem, J. Phys. A: Math. Gen., 11 (1978), 921–927 (1978).

    MathSciNet  Google Scholar 

  105. Mainardi, F. and P. Pironi: The fractional Langevin equation: the Brownian motion revisited, Extracta Mathematicae, 11 (1996), 140–154.

    MathSciNet  Google Scholar 

  106. Mainardi, F. and F. Tampieri: Brownian motion revisited, in Proceedings Int. Congress on Fluid Mechanics and Propulsion, Cairo 1996 (Ed. A. Moubarak), Vol. II, 684–693, ASME and Cairo University 1996. [Int. Congress on Fluid Mechanics and Propulsion, Cairo, Egypt, 29–31 December 1996 ]

    Google Scholar 

  107. Gel’fand, I.M. and G.E. Shilov: Generalized Functions, Vol. 1, Academic Press, New York 1964.

    Google Scholar 

  108. Zemanian, A.H.: Distribution Theory and Transform Analysis, McGraw-Hill, New York 1965.

    MATH  Google Scholar 

  109. Doetsch, G.: Introduction to the Theory and Application of the Laplace Transformation, Springer Verlag, Berlin 1974.

    MATH  Google Scholar 

  110. Nigmatullin, R.R.: The realization of the generalized transfer equation in a medium with fractal geometry, Phys. Stat. Sol. B,133 (1986), 425–430. [English transi. from Russian]

    Google Scholar 

  111. Mainardi, F.: Fractional diffusive waves in viscoelastic solids in IUTAM Symposium - Nonlinear Waves in Solids (Ed. J. L. Wegner and F. R. Norwood), ASME/AMR, Fairfield NJ 1995, 93–97. [Abstract in Appl: Mech. Rev.,46 (1993), 549]

    Google Scholar 

  112. Mainardi, F.: On the initial value problem for the fractional diffusion-wave equation, in Waves and Stability in Continuous Media (Ed. S. Rionero and T. Ruggeri ), World Scientific, Singapore 1994, 246–251.

    Google Scholar 

  113. Mainardi, F.: The time fractional diffusion-wave equation, Radiofisika,38 (1995), 20–36. [English Translation: Radiophysics & Quantum Electronics]

    Google Scholar 

  114. Mainardi, F. and M. Tomirotti: On a special function arising in the time fractional diffusion-wave equation, in Transform Methods and Special Functions, Sofia 1994 (Ed. P. Rusev, I. Dimovski and V. Kiryakova ), Science Culture Technology, Singapore 1995, 171–183.

    Google Scholar 

  115. Mainardi, F.: Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos, Solitons ê4 Fractals, 7 (1996), 1461–1477.

    MATH  MathSciNet  Google Scholar 

  116. Mainardi, F.: The fundamental solutions for the fractional diffusion-wave equation, Applied Mathematics Letters, 9, No 6 (1996), 23–28.

    MATH  MathSciNet  Google Scholar 

  117. Wyss, W.: Fractional diffusion equation, J. Math. Phys., 27 (1986), 2782–2785.

    MATH  MathSciNet  Google Scholar 

  118. Schneider, W.R. and W. Wyss: Fractional diffusion and wave equations, J. Math. Phys., 30 (1989), 134–144.

    MATH  MathSciNet  Google Scholar 

  119. Schneider, W.R: Fractional diffusion, in: Dynamics and Stochastic Processes, Theory and Applications (Eds. R. Lima, L. Streit and D. Vilela Mendes),.Lecture Notes in Physics # 355, Springer Verlag, Heidelberg 1990, 276–286.

    Google Scholar 

  120. Fujita, Y.: Integrodifferential equation which interpolates the heat equation and the wave equation, Osaka J. Math., 27 (1990), 309–321, 797–804.

    Google Scholar 

  121. Kochubei, A.N.: A Cauchy problem for evolution equations of fractional order, J. Diff. Eqns,25 (1989), 967–974. [English transi. from Russian]

    Google Scholar 

  122. Kochubei, A.N.: Fractional order diffusion, J. Diff. Eqns,26 (1990), 485–492. [English transi. from Russian]

    Google Scholar 

  123. El-Sayed, A.M.A.: Fractional-order diffusion-wave equation, Int. J. Theor. Phys., 35, (1996), 311–322

    MATH  MathSciNet  Google Scholar 

  124. Engler, H.: Similarity solutions for a class of hyperbolic integrodifferential equations, Differential Integral Eqns,(1997), to appear.

    Google Scholar 

  125. Erdélyi, A., Magnus, W., Oberhettinger and F.G. Tricomi: Higher Transcendental Functions,Bateman Project, Vol. 3, McGraw-Hill, New York 1955, Ch. 18.

    Google Scholar 

  126. Wright, E.M.: On the coefficients of power series having exponential singularities, J. London Math. Soc. 8 (1933), 71–79.

    Google Scholar 

  127. Wright, E.M.: The generalized Bessel function of order greater than one, Quart. J. Math. (Oxford ser.) 11 (1940), 36–48.

    Google Scholar 

  128. Stankovié, B.: On the function of E.M. Wright, Publ. Institut Math. Beograd (Nouv. Serie) 10, No 24 (1970), 113–124.

    Google Scholar 

  129. Gajie, Lj. and B. Stankovié, Some properties of Wright’s function, Publ. Institut Math. Beograd (Nouv. serie) 20, No 34 (1976), 91–98.

    Google Scholar 

  130. Kiryakova, V.: Generalized Fractional Calculus and Applications, Pitman Research Notes in Mathematics # 301, Longman, Harlow 1994.

    Google Scholar 

  131. Tricomi, F.G.: Fonctions Hypergéometriques Confluentes, Mém. Sci. Math. # 140, Gauthier-Villars, Paris 1960.

    Google Scholar 

  132. Gatteschi, L.: Funzioni Speciali, UTET, Torino 1973, p. 196–197.

    Google Scholar 

  133. Bender, C.M. and S.A. Orszag: Advanced Mathematical Methods for Scientists and Engineers,McGraw-Hill, Singapore 1987, Ch 3.

    Google Scholar 

  134. Mainardi, F. and M. Tomirotti: The asymptotic representation of the generalized hyper-Airy function in the complex plane, PRE-PRINT, Dept. of Physics, University of Bologna, 1996.

    Google Scholar 

  135. Pollard, H.: The representation of exp (—xa) as a Laplace integral, Bull. Amer. Math. Soc., 52 (1946), 908–910.

    MATH  MathSciNet  Google Scholar 

  136. Humbert, P.: Nouvelles correspondances symboliques, Bull. Sci. Mathém. (Paris, II ser.), 69 (1945), 121–129.

    MATH  MathSciNet  Google Scholar 

  137. Mikusinski, J.: On the function whose Laplace transform is exp (—s’A), Studia Math., 18 (1959), 191–198.

    MATH  MathSciNet  Google Scholar 

  138. Buchen, P.W. and F. Mainardi, Asymptotic expansions for transient viscoelastic waves, J. de Mécanique, 14 (1975), 597–608.

    MATH  Google Scholar 

  139. Mainardi, F.: Seismic pulse propagation with constant Q and stable probability distributions, Ann. Geofisica, (1997), in press.

    Google Scholar 

  140. Mainardi, F. and P. Paradisi: The stable probability distributions generated by the fractional diffusion-wave equation, Int. J. Theor. Appl. Finance, (1997), submitted.

    Google Scholar 

  141. Mainardi, F. and R. Gorenflo: Fractional calculus and stable probability distributions, Arch. Mech., (1997), submitted.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Wien

About this chapter

Cite this chapter

Mainardi, F. (1997). Fractional Calculus. In: Carpinteri, A., Mainardi, F. (eds) Fractals and Fractional Calculus in Continuum Mechanics. International Centre for Mechanical Sciences, vol 378. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2664-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2664-6_7

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82913-4

  • Online ISBN: 978-3-7091-2664-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics