Skip to main content

Micromechanical Modelling of the Thermomechanical Behavior of Shape Memory Alloys

  • Chapter

Part of the International Centre for Mechanical Sciences book series (CISM,volume 368)

Abstract

In this work we developed a model for the behavior of shape memory alloys based simultaneously on thermodynamical and micromechanical concepts. The basic field equations including moving boundary concepts are recalled and applied to the description of the transformation by discrete internal variables. To point out the different characteristic length scales appearing in shape memory alloys, two models are developed. The first one concerns the behavior of a grain in polycrystalline materials and the second one uses the self-consistent approximation for the intergranular interaction.

The results obtained from this model well agree with the experimental observations. In particular, the model is able to predict the dissymmetry observed during a tensile-compression test as well as the behavior during multiaxial loading. The parameters of the model are identified from experiments only.

For structure calculation applications, we develop also a simplified analytical model using only two internal variables for which some aspects may be identified from the crystallographic model.

Keywords

  • Shape Memory Alloy
  • Representative Volume Element
  • Internal Variable
  • Habit Plane
  • Transformation Strain

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-7091-2660-8_5
  • Chapter length: 68 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-7091-2660-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Tanaka, S. Kobayashi, Y. Sato, “Thermomechanics of Transformation Pseudoelasticity and Shape Memory Effect in Alloys”, Int. J. Plasticity, Vol. 2, pp. 59–72 (1986).

    CrossRef  Google Scholar 

  2. B. Raniecki, C. Lexcellent, K. Tanaka, “Thermodynamic Models of Pseudoelastic Behaviour of Shape Memory Alloys”, Arch. of Mech., Vol. 3 (1992).

    Google Scholar 

  3. A. L. Roytburd, “Elastic Domains and Polydomain Phases in Solids”, Phase Transitions, Vol. 45, pp. 1–33 (1993).

    CrossRef  Google Scholar 

  4. K. Bhattacharya, “Comparison of the geometrically nonlinear and linear theories of martensitic transformation”, Continuum Mechanics and thermodynamics, Vol. 5, pp. 205–242 (1993).

    MathSciNet  CrossRef  MATH  Google Scholar 

  5. J. M. Ball, R. D. James, “Fine phase mixtures as minimisers of elastic energy”, Archive for Rational Mechanics, Vol. 100, pp. 13–52 (1987).

    MathSciNet  CrossRef  MATH  Google Scholar 

  6. N. Ono, A. Sato, “Plastic Deformation Governed by the Stress Induced Martensitic Transformation in Polycristals”, Trans. Japan Inst. of Metals, Vol. 29, No. 4, pp. 267–273 (1988).

    Google Scholar 

  7. Q. P. Sun, K. C. Hwang, S. W. YU, “A Micromechanics Constitutive Model of Transformation Plasticity with Shear and Dilatation Effect”, J. Mech. Phys. Solids, Vol. 9, No. 4, pp. 507–524 (1991).

    CrossRef  Google Scholar 

  8. E. Patoor, A. Eberhardt, M. Berveiller, “Thermomechanical Behaviour of Shape Memory Alloys”, Arch. of Mech., Vol. 40, No. 5–6, pp. 775–794 (1988).

    Google Scholar 

  9. Y. H. Wen, S. Denis, E. Gautier, “Criterion for the progress of martensitic transformation in a finite element simulation, Journal de Physique IV, Vol. 5 pp. C2–531–536 (1995).

    Google Scholar 

  10. K. Simonsson, “Micromechanical finite element simulations of the plastic behavior of steels undergoing martensitic transformation”, Ph D Thesis, Linköping, Studies in Sciences and Technology Dissertations N° 362, Linköping (1994).

    Google Scholar 

  11. L. Delaey, “Diffusionless Transformations”, chapter 6 in Materials Science and Technologies Vol. 5: Phase Transformations in Materials Ed. R. W. Cahn, P. Haasen, E. J. Kramen, Ed. Vch Publishers, Isbn 3–527–26818–9, pp. 339–404 (1991).

    Google Scholar 

  12. M. Cohen, “Martensitic transformations in material science and engineering”, Transactions of the Japan Institute of Metals, Vol. 39, No. 8, pp. 609–624 (1988).

    Google Scholar 

  13. G. Guénin, “Alliages à mémoire de forme”, in Techniques de l’ingénieur M 530 (1986).

    Google Scholar 

  14. J. D. Eshelby, “Elastic Inclusions and Inhomogeneities”, in Progress in Solids Mechanics (Ed. I. N. Sneddon, R. Hill), Vol. 2, North-Holland, Amsterdam, pp. 87–140 (1961).

    Google Scholar 

  15. E. Kroner, “Zur Plastischen Verformung des Vielkristalls”, Acta metall., Vol. 9, pp. 155–161 (1961).

    CrossRef  Google Scholar 

  16. M. S. Wechsler, D. S. Lieberman, T. A. Read, ” On the Theory of the Formation of Martensite”, T.ans. Aime, Vol. 197, pp. 1503–1515 (1953).

    Google Scholar 

  17. C. M. Wayman, Introduction to the crystallography of martensitic transformations MacMillan Series in Materials Science, New York (1966).

    Google Scholar 

  18. E. Kroner, “Modified Green functions in the theory of heterogeneous and/or anisotropic elastic media”, in Micromechanics and inhomogeneity (Ed. Weng, Taya), Vol. 2, Springer Verlag (1989).

    Google Scholar 

  19. M. Berveiller, A. Zaoui, “Modelling of the Plastic Behavior of Inhomogeneous Media”, J. Engng. Mat. and Technology, No. 106, pp. 295–299 (1984).

    CrossRef  Google Scholar 

  20. T. Mori, K. Tanaka, “Average stress in matrix and average energy of materials with misfitting inclusions”, Acta metall., Vol. 21, pp. 571–574 (1973).

    CrossRef  Google Scholar 

  21. O. Fassi Fehri, A. Hihi, M. Berveiller, “Elastic Interactions Between Variants in Pseudoelastic Single Crystals”, Scripta Met., Vol. 21, pp. 771 (1987).

    CrossRef  Google Scholar 

  22. P. H. Dederichs, R. Zeller, “Elastische konstanten vor vielkristallen”, Report of Kfa, 877-FF (1972).

    Google Scholar 

  23. J. Hadamard, Leçons sur la propagation des ondes et les équations de l’hydrodynamique Cours du Collège de France, Librairie Scientifique A. Hermann, Paris (1903).

    Google Scholar 

  24. J. R. Patel, M. Cohen, “Criterion for the action of applied stress in the martensitic. transformation”, Acta metall., Vol. 1, pp. 531–538 (1953).

    CrossRef  Google Scholar 

  25. E. Patoor, A. Eberhardt, M. Berveiller, “Potentiel pseudoélastique et plasticité de transformation martensitique dans les mono et polycristaux métalliques”, Acta metall., Vol. 35, pp. 2779–2789 (1987).

    CrossRef  Google Scholar 

  26. G. Edwards, J. Perkins, “Suggestions for ‘Applying a Phenomenological Approach to Investigations of Mechanical Behavior in Sme Alloys”, in Shape Memory Effects in Alloys (Ed. J. Perkins) Plenum Press, Isbn 0–306–30891–6, pp. 445 – 449 (1975).

    Google Scholar 

  27. J. Bohong, T. Y. Hsu (XU Zuyao), “Influence of Order, Grain Size and Pre-Strain on Shape Memory Effect in Cu-Zn-Al Alloys”, Procs. Icomat’89, Materials Science Forum, Vols. 56–58, pp. 457–462 (1990).

    CrossRef  Google Scholar 

  28. L Moller, K. Wilmanski, “A Model for Phase Transition in Pseudoelastic Bodies”, Il Nuevo Cimento, Vol. 57B, pp. 283, (1980).

    CrossRef  Google Scholar 

  29. F. Falk, “Model Free Energy, Mechanics and Thermodynamics of Shape Memory Alloys”, Acta metall., Vol. 28, pp. 1773–1780 (1980).

    CrossRef  Google Scholar 

  30. R. D. James, “Displacive Phase Transformations in Solids”, J. Mech. Phys. Solids, Vol. 34, No. 4, pp. 359–394 (1986).

    CrossRef  MATH  Google Scholar 

  31. L. C. Brinson, “One-dimensional Constitutive Behavior of Shape Memory Alloys: Thermomechanical Dérivation with Non-constant Material Functions and Redefined Martensite Internal Variable”, J. of Intell. Mater. Syst. and Struct., Vol. 4, pp. 229242 (1993).

    Google Scholar 

  32. J. G. Boyd, D. C. Lagoudas, “A Constitutive Model for Simultaneous Transformation and Reorientation in Shape Memory Materials”, Procs. Asme, Amd-Vol. 189/Pvp-Vol. 292, Mechanics of phase transformations and shape memory alloys, pp. 159–172 (1994).

    Google Scholar 

  33. E. Patoor, M. O. Bensalah, A. Eberhardt, M. Berveiller, “Détermination du comportement thermomécanique des alliages à mémoire de forme par minimisation d’un potentiel thermodynamique”, La Revue de Métallurgie, pp. 15871592 (1992).

    Google Scholar 

  34. Z. Moumni, “Sur le modélisation de changement de phase solide: application aux matériaux à mémoire de forme et à l’endommagement fragile partiel”, Thèse de doctorat, E. N. P. C. (1995).

    Google Scholar 

  35. Z. Moumni, Q. S. Nguyen, “A Model of Materials with Phase Change and Applications”, Journal de Physique IV, Vol. 6 pp. C1–335–345 (1996).

    Google Scholar 

  36. J. R. Rice, “ Inelastic Constitutive Relation for Solids: an Internal Variable Theory and its Application to Metal Plasticity, J. Mech. Phys. Solids, Vol. 19, pp. 433455 (1971).

    Google Scholar 

  37. J. W. Christian, “Deformation by Moving Interfaces”, Metall. Trans. A, Vol. 13A, pp. 509–538 (1982).

    Google Scholar 

  38. E. Patoor, M. O. Bensalah, A. Eberhardt, M. Berveiller, “Micromechanical Aspects of the Shape Memory Behaviour”, Procs. Icomat’92, Monterey (CA), Usa, pp. 401–406 (1993).

    Google Scholar 

  39. E. Patoor, A. Eberhardt, M. Berveiller, “Micromechanical Modelling of Superelasticity in Shape Memory Alloys”, Pitman Research Notes in Mathematics Series, Vol. 296, pp. 38–54 (1993).

    MathSciNet  Google Scholar 

  40. M. Berveiller, J. Morreale, E. Reubrez, “Comportement élastoplastique des aciers lors de la mise en forme: théorie micromécanique, simulations numériques et résultats expérimentaux”, Revue Européennes des éléments finis, Vol. 3, No. 4, pp. 491–514 (1994).

    MATH  Google Scholar 

  41. E. Patoor, A. Eberhardt, M. Berveiller, “Micromechanical Modelling of the Shape Memory Behavior”, Proc. Asme Wam ‘94, Chicago, IL (Usa), Amd- Vol. 189/Pvd- Vol. 292, pp. 23–37 (1994).

    Google Scholar 

  42. E. Patoor, A. Eberhardt, M. Berveiller, “Micromechanical modelling of superelasticity in shape memory alloys”, Journal de Physique IV, Vol. 6 pp. Cl-277–292 (1996).

    Google Scholar 

  43. K. Adachi, J. Perkins, C. M. Wayman, “The Crystallography and Boundary Structure of Interplate-Group Combinations of 18R Martensite Variant in Cu-Zn-Al Shape Memory Alloy”, Acta metal, Vol. 36, No. 5, pp. 1343–1364 (1988).

    CrossRef  Google Scholar 

  44. R. Hill, “Continuum microniechanics of elastoplastic polycrystals”, J. Mech. Phys. Solids., Vol. 13, pp. 89–101 (1965).

    CrossRef  MATH  Google Scholar 

  45. A. Zaoui, “Macroscopic Plastic Behaviour of Microhomogeneous Materials”, in “Plasticity Today” (Ed. A. Sawczuk, J. Bianchi), Ed. Elsevier, pp. 451–469 (1985).

    Google Scholar 

  46. E. Patoor, M. O. Bensalah, A. Eberhardt, M. Berveiller, “Détermination du comportement thermomécanique des alliages à mémoire de forme par minimisation d’un potentiel thermodynamique”, La Revue de Métallurgie, pp. 1587–1592 (1992).

    Google Scholar 

  47. P. H. Dederichs, R. Tftler, “Variational Treatment of the Elastic Constants of Desordered Materials, Z. Phys., Vol. 259, pp. 103 (1973).

    CrossRef  Google Scholar 

  48. P. Lipinski, J. Krier, M. Berveiller, “Elastoplasticité des métaux en grandes déformations: comportement global et évolution de la structure interne”, Rev. Phys. Appl., Vol. 25, pp. 361–388 (1990).

    CrossRef  Google Scholar 

  49. J. DE Vos, E. Aernoudt, L. Delaey, “The Crystallography of the Martensitic Transformation of B. C. 0 into 9R a Generalized Mathematical Model”, Z. Metallkde, B.. 69, H7, pp. 438–444 (1978).

    Google Scholar 

  50. D. Entemeyer, E. Patoor, A. Eberhardt, M. Berveiller, “Micromechanical modelling of the superelastic behavior of materials undergoing thermoelastic phase transition”, Journal de Physique IV, Vol. 5 pp. C8–233–238 (1995).

    Google Scholar 

  51. K. Shimizu, K. Otsuka, “Optical and electron microscope observations of transformation and deformation characteristics in Cu–Al–Ni marmem Alloys”, in Shape Memory Effects in Alloys (Ed. J. Perkins) Plenum Press, Isbn 0–30630891–6, pp. 59 – 87 (1975).

    Google Scholar 

  52. L. Delaey, F. Van DE Voorde, R. V. Krishnan, “Martensitic formation as a deformation process in polycrystalline Copper–Zinc based Alloys”, in Shape Memory Effects in Alloys (Ed. J. Perkins) Plenum Press, Isbn 0–306–30891–6, pp. 351 – 364 (1975).

    Google Scholar 

  53. E. Patoor, M. EL Amrani, A. Eberhardt, M. Berveiil. ER, “Determination of the Origin for the Dissymmetry Observed Between Tensile and Compression Tests on Shape Memory Alloys”, Journal de Physique IV, Vol. 5, pp. C2–495–500 (1995).

    Google Scholar 

  54. P. Vacher, C. Lexcf, JJ. Ent, “Study of Pseudoelastic Behaviour of Polycrystallin Shape Memory Alloys by Resistivity Measurement and Acoustic Emission”, Procs. Icm 6, Kyoto, Japan, pp. 231–236 (1991).

    Google Scholar 

  55. P. Y. Manach, “Etude du comportement thermomécanique d’alliages à mémoire de forme NiTi, , Thèse de doctorat, Institut National Polytechnique de Grenoble, France (1992).

    Google Scholar 

  56. Y. Gillet, E. Patoor, M. Berveiller, “Structure calculation applied to Shape Memory Alloys”, Journal de Physique IV, Vol. 5, pp. C2–343–348 (1995).

    Google Scholar 

  57. C. Rogueda, “Modélisation thermodynamique du comportement pseudoélastique des alliages It mémoire de forme”, Thèse de doctorat, Université de Franche-Comté, Besançon (1993).

    Google Scholar 

  58. M. EL Amrani Zirifi, “Contributions It l’étude micromécanique des transformations martensitiques the rmoélastiques”, Thèse de doctorat, Université de Metz, France, 1994.

    Google Scholar 

  59. G. Bourbon, C. Lexcellent, S. Leclercq, “Modelling of the non isothermal cyclic behaviour of a polycrystalline Cu–Zn–Al shape memory alloy”, Journal de Physique IV, Vol. 5, pp. C8–221–226 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1997 Springer-Verlag Wien

About this chapter

Cite this chapter

Patoor, E., Berveiller, M. (1997). Micromechanical Modelling of the Thermomechanical Behavior of Shape Memory Alloys. In: Berveiller, M., Fischer, F.D. (eds) Mechanics of Solids with Phase Changes. International Centre for Mechanical Sciences, vol 368. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2660-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2660-8_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82904-2

  • Online ISBN: 978-3-7091-2660-8

  • eBook Packages: Springer Book Archive