K. Tanaka, S. Kobayashi, Y. Sato, “Thermomechanics of Transformation Pseudoelasticity and Shape Memory Effect in Alloys”, Int. J. Plasticity, Vol. 2, pp. 59–72 (1986).
CrossRef
Google Scholar
B. Raniecki, C. Lexcellent, K. Tanaka, “Thermodynamic Models of Pseudoelastic Behaviour of Shape Memory Alloys”, Arch. of Mech., Vol. 3 (1992).
Google Scholar
A. L. Roytburd, “Elastic Domains and Polydomain Phases in Solids”, Phase Transitions, Vol. 45, pp. 1–33 (1993).
CrossRef
Google Scholar
K. Bhattacharya, “Comparison of the geometrically nonlinear and linear theories of martensitic transformation”, Continuum Mechanics and thermodynamics, Vol. 5, pp. 205–242 (1993).
MathSciNet
CrossRef
MATH
Google Scholar
J. M. Ball, R. D. James, “Fine phase mixtures as minimisers of elastic energy”, Archive for Rational Mechanics, Vol. 100, pp. 13–52 (1987).
MathSciNet
CrossRef
MATH
Google Scholar
N. Ono, A. Sato, “Plastic Deformation Governed by the Stress Induced Martensitic Transformation in Polycristals”, Trans. Japan Inst. of Metals, Vol. 29, No. 4, pp. 267–273 (1988).
Google Scholar
Q. P. Sun, K. C. Hwang, S. W. YU, “A Micromechanics Constitutive Model of Transformation Plasticity with Shear and Dilatation Effect”, J. Mech. Phys. Solids, Vol. 9, No. 4, pp. 507–524 (1991).
CrossRef
Google Scholar
E. Patoor, A. Eberhardt, M. Berveiller, “Thermomechanical Behaviour of Shape Memory Alloys”, Arch. of Mech., Vol. 40, No. 5–6, pp. 775–794 (1988).
Google Scholar
Y. H. Wen, S. Denis, E. Gautier, “Criterion for the progress of martensitic transformation in a finite element simulation, Journal de Physique IV, Vol. 5 pp. C2–531–536 (1995).
Google Scholar
K. Simonsson, “Micromechanical finite element simulations of the plastic behavior of steels undergoing martensitic transformation”, Ph D Thesis, Linköping, Studies in Sciences and Technology Dissertations N° 362, Linköping (1994).
Google Scholar
L. Delaey, “Diffusionless Transformations”, chapter 6 in Materials Science and Technologies Vol. 5: Phase Transformations in Materials Ed. R. W. Cahn, P. Haasen, E. J. Kramen, Ed. Vch Publishers, Isbn 3–527–26818–9, pp. 339–404 (1991).
Google Scholar
M. Cohen, “Martensitic transformations in material science and engineering”, Transactions of the Japan Institute of Metals, Vol. 39, No. 8, pp. 609–624 (1988).
Google Scholar
G. Guénin, “Alliages à mémoire de forme”, in Techniques de l’ingénieur M 530 (1986).
Google Scholar
J. D. Eshelby, “Elastic Inclusions and Inhomogeneities”, in Progress in Solids Mechanics (Ed. I. N. Sneddon, R. Hill), Vol. 2, North-Holland, Amsterdam, pp. 87–140 (1961).
Google Scholar
E. Kroner, “Zur Plastischen Verformung des Vielkristalls”, Acta metall., Vol. 9, pp. 155–161 (1961).
CrossRef
Google Scholar
M. S. Wechsler, D. S. Lieberman, T. A. Read, ” On the Theory of the Formation of Martensite”, T.ans. Aime, Vol. 197, pp. 1503–1515 (1953).
Google Scholar
C. M. Wayman, Introduction to the crystallography of martensitic transformations MacMillan Series in Materials Science, New York (1966).
Google Scholar
E. Kroner, “Modified Green functions in the theory of heterogeneous and/or anisotropic elastic media”, in Micromechanics and inhomogeneity (Ed. Weng, Taya), Vol. 2, Springer Verlag (1989).
Google Scholar
M. Berveiller, A. Zaoui, “Modelling of the Plastic Behavior of Inhomogeneous Media”, J. Engng. Mat. and Technology, No. 106, pp. 295–299 (1984).
CrossRef
Google Scholar
T. Mori, K. Tanaka, “Average stress in matrix and average energy of materials with misfitting inclusions”, Acta metall., Vol. 21, pp. 571–574 (1973).
CrossRef
Google Scholar
O. Fassi
Fehri, A. Hihi, M. Berveiller, “Elastic Interactions Between Variants in Pseudoelastic Single Crystals”, Scripta Met., Vol. 21, pp. 771 (1987).
CrossRef
Google Scholar
P. H. Dederichs, R. Zeller, “Elastische konstanten vor vielkristallen”, Report of Kfa, 877-FF (1972).
Google Scholar
J. Hadamard, Leçons sur la propagation des ondes et les équations de l’hydrodynamique Cours du Collège de France, Librairie Scientifique A. Hermann, Paris (1903).
Google Scholar
J. R. Patel, M. Cohen, “Criterion for the action of applied stress in the martensitic. transformation”, Acta metall., Vol. 1, pp. 531–538 (1953).
CrossRef
Google Scholar
E. Patoor, A. Eberhardt, M. Berveiller, “Potentiel pseudoélastique et plasticité de transformation martensitique dans les mono et polycristaux métalliques”, Acta metall., Vol. 35, pp. 2779–2789 (1987).
CrossRef
Google Scholar
G. Edwards, J. Perkins, “Suggestions for ‘Applying a Phenomenological Approach to Investigations of Mechanical Behavior in Sme Alloys”, in Shape Memory Effects in Alloys (Ed. J. Perkins) Plenum Press, Isbn 0–306–30891–6, pp. 445 – 449 (1975).
Google Scholar
J. Bohong, T. Y. Hsu (XU Zuyao), “Influence of Order, Grain Size and Pre-Strain on Shape Memory Effect in Cu-Zn-Al Alloys”, Procs. Icomat’89, Materials Science Forum, Vols. 56–58, pp. 457–462 (1990).
CrossRef
Google Scholar
L Moller, K. Wilmanski, “A Model for Phase Transition in Pseudoelastic Bodies”, Il Nuevo Cimento, Vol. 57B, pp. 283, (1980).
CrossRef
Google Scholar
F. Falk, “Model Free Energy, Mechanics and Thermodynamics of Shape Memory Alloys”, Acta metall., Vol. 28, pp. 1773–1780 (1980).
CrossRef
Google Scholar
R. D. James, “Displacive Phase Transformations in Solids”, J. Mech. Phys. Solids, Vol. 34, No. 4, pp. 359–394 (1986).
CrossRef
MATH
Google Scholar
L. C. Brinson, “One-dimensional Constitutive Behavior of Shape Memory Alloys: Thermomechanical Dérivation with Non-constant Material Functions and Redefined Martensite Internal Variable”, J. of Intell. Mater. Syst. and Struct., Vol. 4, pp. 229242 (1993).
Google Scholar
J. G. Boyd, D. C. Lagoudas, “A Constitutive Model for Simultaneous Transformation and Reorientation in Shape Memory Materials”, Procs. Asme, Amd-Vol. 189/Pvp-Vol. 292, Mechanics of phase transformations and shape memory alloys, pp. 159–172 (1994).
Google Scholar
E. Patoor, M. O. Bensalah, A. Eberhardt, M. Berveiller, “Détermination du comportement thermomécanique des alliages à mémoire de forme par minimisation d’un potentiel thermodynamique”, La Revue de Métallurgie, pp. 15871592 (1992).
Google Scholar
Z. Moumni, “Sur le modélisation de changement de phase solide: application aux matériaux à mémoire de forme et à l’endommagement fragile partiel”, Thèse de doctorat, E. N. P. C. (1995).
Google Scholar
Z. Moumni, Q. S. Nguyen, “A Model of Materials with Phase Change and Applications”, Journal de Physique IV, Vol. 6 pp. C1–335–345 (1996).
Google Scholar
J. R. Rice, “ Inelastic Constitutive Relation for Solids: an Internal Variable Theory and its Application to Metal Plasticity, ” J. Mech. Phys. Solids, Vol. 19, pp. 433455 (1971).
Google Scholar
J. W. Christian, “Deformation by Moving Interfaces”, Metall. Trans. A, Vol. 13A, pp. 509–538 (1982).
Google Scholar
E. Patoor, M. O. Bensalah, A. Eberhardt, M. Berveiller, “Micromechanical Aspects of the Shape Memory Behaviour”, Procs. Icomat’92, Monterey (CA), Usa, pp. 401–406 (1993).
Google Scholar
E. Patoor, A. Eberhardt, M. Berveiller, “Micromechanical Modelling of Superelasticity in Shape Memory Alloys”, Pitman Research Notes in Mathematics Series, Vol. 296, pp. 38–54 (1993).
MathSciNet
Google Scholar
M. Berveiller, J. Morreale, E. Reubrez, “Comportement élastoplastique des aciers lors de la mise en forme: théorie micromécanique, simulations numériques et résultats expérimentaux”, Revue Européennes des éléments finis, Vol. 3, No. 4, pp. 491–514 (1994).
MATH
Google Scholar
E. Patoor, A. Eberhardt, M. Berveiller, “Micromechanical Modelling of the Shape Memory Behavior”, Proc. Asme
Wam ‘94, Chicago, IL (Usa), Amd- Vol. 189/Pvd- Vol. 292, pp. 23–37 (1994).
Google Scholar
E. Patoor, A. Eberhardt, M. Berveiller, “Micromechanical modelling of superelasticity in shape memory alloys”, Journal de Physique IV, Vol. 6 pp. Cl-277–292 (1996).
Google Scholar
K. Adachi, J. Perkins, C. M. Wayman, “The Crystallography and Boundary Structure of Interplate-Group Combinations of 18R Martensite Variant in Cu-Zn-Al Shape Memory Alloy”, Acta metal, Vol. 36, No. 5, pp. 1343–1364 (1988).
CrossRef
Google Scholar
R. Hill, “Continuum microniechanics of elastoplastic polycrystals”, J. Mech. Phys. Solids., Vol. 13, pp. 89–101 (1965).
CrossRef
MATH
Google Scholar
A. Zaoui, “Macroscopic Plastic Behaviour of Microhomogeneous Materials”, in
“Plasticity Today” (Ed. A. Sawczuk, J. Bianchi), Ed. Elsevier, pp. 451–469 (1985).
Google Scholar
E. Patoor, M. O. Bensalah, A. Eberhardt, M. Berveiller, “Détermination du comportement thermomécanique des alliages à mémoire de forme par minimisation d’un potentiel thermodynamique”, La Revue de Métallurgie, pp. 1587–1592 (1992).
Google Scholar
P. H. Dederichs, R. Tftler, “Variational Treatment of the Elastic Constants of Desordered Materials, Z. Phys., Vol. 259, pp. 103 (1973).
CrossRef
Google Scholar
P. Lipinski, J. Krier, M. Berveiller, “Elastoplasticité des métaux en grandes déformations: comportement global et évolution de la structure interne”, Rev. Phys. Appl., Vol. 25, pp. 361–388 (1990).
CrossRef
Google Scholar
J. DE Vos, E. Aernoudt, L. Delaey, “The Crystallography of the Martensitic Transformation of B. C. 0 into 9R a Generalized Mathematical Model”, Z. Metallkde, B.. 69, H7, pp. 438–444 (1978).
Google Scholar
D. Entemeyer, E. Patoor, A. Eberhardt, M. Berveiller, “Micromechanical modelling of the superelastic behavior of materials undergoing thermoelastic phase transition”, Journal de Physique IV, Vol. 5 pp. C8–233–238 (1995).
Google Scholar
K. Shimizu, K. Otsuka, “Optical and electron microscope observations of transformation and deformation characteristics in Cu–Al–Ni marmem Alloys”, in Shape Memory Effects in Alloys (Ed. J. Perkins) Plenum Press, Isbn 0–30630891–6, pp. 59 – 87 (1975).
Google Scholar
L. Delaey, F. Van DE Voorde, R. V. Krishnan, “Martensitic formation as a deformation process in polycrystalline Copper–Zinc based Alloys”, in Shape Memory Effects in Alloys (Ed. J. Perkins) Plenum Press, Isbn 0–306–30891–6, pp. 351 – 364 (1975).
Google Scholar
E. Patoor, M. EL Amrani, A. Eberhardt, M. Berveiil. ER, “Determination of the Origin for the Dissymmetry Observed Between Tensile and Compression Tests on Shape Memory Alloys”, Journal de Physique IV, Vol. 5, pp. C2–495–500 (1995).
Google Scholar
P. Vacher, C. Lexcf, JJ. Ent, “Study of Pseudoelastic Behaviour of Polycrystallin Shape Memory Alloys by Resistivity Measurement and Acoustic Emission”, Procs. Icm 6, Kyoto, Japan, pp. 231–236 (1991).
Google Scholar
P. Y. Manach, “Etude du comportement thermomécanique d’alliages à mémoire de forme NiTi, ”, Thèse de doctorat, Institut National Polytechnique de Grenoble, France (1992).
Google Scholar
Y. Gillet, E. Patoor, M. Berveiller, “Structure calculation applied to Shape Memory Alloys”, Journal de Physique IV, Vol. 5, pp. C2–343–348 (1995).
Google Scholar
C. Rogueda, “Modélisation thermodynamique du comportement pseudoélastique des alliages It mémoire de forme”, Thèse de doctorat, Université de Franche-Comté, Besançon (1993).
Google Scholar
M. EL Amrani
Zirifi, “Contributions It l’étude micromécanique des transformations martensitiques the rmoélastiques”, Thèse de doctorat, Université de Metz, France, 1994.
Google Scholar
G. Bourbon, C. Lexcellent, S. Leclercq, “Modelling of the non isothermal cyclic behaviour of a polycrystalline Cu–Zn–Al shape memory alloy”, Journal de Physique IV, Vol. 5, pp. C8–221–226 (1995).
Google Scholar