Interaction of Stresses and Strains with Phase Changes in Metals

Physical Aspects
  • H. P. Stüwe
Part of the International Centre for Mechanical Sciences book series (CISM, volume 368)


Phase changes in metals may cause stresses and strains, stresses and strains may cause phase changes. The first part of this chapter discusses such interactions for phase changes controlled by diffusion, the second part for diffusionless (“martensitic”) transformations.


Phase Change Habit Plane High Temperature Phase Martensite Formation Mechanical Twin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shiwa,Y., H.P. Stüwe and E. Pink: Anelastic Effects in Molybdenum Due to the Precipitation and Dissolution of Oxides at Low Temperatures. Acta metall. mater. 38 (1990), 819–824.CrossRefGoogle Scholar
  2. 2.
    Werner, E.: Thermal Shape Instabilities of Lamellar Structures. Z. Metallkde 81 (1990), 790–798.Google Scholar
  3. 3.
    Werner E.: The Growth Of Holes in Plates of Cementite. Mater. Sci. Engng A132 (1991), 213–223.CrossRefGoogle Scholar
  4. 4.
    Cottrell, A.H. and B.A. Bilby: A Mechanism for the Growth of Deformation Twins in Crystals. Phil. Mag. 42 (1951), 573.zbMATHGoogle Scholar
  5. 5.
    Mahajan, S.: Interrelationship between Slip and Twinning in b.c.c. Crystals. Acta Met. 23 (1975), 671.CrossRefGoogle Scholar
  6. 6.
    Sleeswyk, A.W.: Emissary Dislocations: Theory and Experiments onf the Propagation of Deformation Twins in a-Fe. Acta Met 10 (1962), 705.CrossRefGoogle Scholar
  7. 7.
    Reed-Hill, Hirth and Rogers: Deformation Twinning. AIME-Conference, Florida, 1963.Google Scholar
  8. 8.
    Christian, J.W. and S. Mahajan: Deformation Twinning. Progress in Materials Science, vol. 39, 1–157.Google Scholar
  9. 9.
    see e.g. Liebermann, D.S.: Phase Transformations. Metals Park, Ohio: Amer. Soc. for Metals, 1970.Google Scholar
  10. 10.
    Fischer, F.D., Q.P. Sun and K. Tanaka: Transformation Induced Plasticity. Applied Mechanics Reviews 49, nr. 6, June 1996, 317–364.CrossRefGoogle Scholar
  11. 11.
    Tiefenthaler, B., G. Reisner and E. Werner: Verformungsinduzierte Martensitbildung in einer Kupfer-Eisen-Legierung: Experimente und Modellierung. Z. Metallkde. 86, 12 (1995), 845–851.Google Scholar
  12. 12.
    Hornbogen, E.: On Martensitic Transformation Cycles. Z. Metallkde. 86, 12 (1995), 656–664.Google Scholar
  13. 13.
    Herper, H.C., E. Hofman, Entel P. and W. Weber: Structural Phase Transformation and Phonon Softening in Iron-Based Alloys. Journal de Physique IV, Colloque C8, Supplement an J. De Physique III, Vol. 5 (1995), 293–298.Google Scholar
  14. 14.
    Hornbogen, E. and E. Kobus: A Metallographic Study of Plysic Deformation of Martensitic NiTi. Z. Metallkde. 87 (1996), 442–447.Google Scholar
  15. 15.
    Delaey, L., R.V. Krishnan, H. Tas and H. Warlimont: Thermoelasticity, Pseudoelasticity and the Memory Effects Associated with Martensitic Transformations. Parts 1 and 2, J. of Mat. Sci. 9 (1974), 1521–1555.CrossRefGoogle Scholar
  16. 16.
    see, e.g. Zhu, Z.S., J.L. Gu and N.P. Chen: Variant Selection and Phase Transformation Texture in Titanium. J. of Mat. Sci. Letters 14 (1995), 1153–1154.Google Scholar
  17. 17.
    Hornbogen, E.: On the Term “Pseudo-Elasticity”. Z. Metallkde. 86 (1995), 341–344.Google Scholar

Copyright information

© Springer-Verlag Wien 1997

Authors and Affiliations

  • H. P. Stüwe
    • 1
  1. 1.University of Mining and MetallurgyLeobenAustria

Personalised recommendations