Skip to main content

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 290))

  • 157 Accesses

Abstract

Main advantage of photoelasticity lies in the possibility to determine stresses also at internal points of a three-dimensional body. However, classical methods used for this purpose (the frozen stress and scattered light methods) are either labour-consuming or need complicated apparatus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Гинзбург, В.Л., Об исследовании напряжений оптическим методом, Журнал мехн. фцз., 14, 181, 1944.

    Google Scholar 

  2. Абен, Х., О применении метода фотоупругости для исследования выпученных пластинок, Изв. АН ЭССР, сер. мехн. ц фцз.-мам. наук, 6, 28, 1957.

    Google Scholar 

  3. Aben, H.K., Optical phenomena in photoelastic models by the rotation of principal axes, Exp. Mech. 6, 13, 1966.

    Article  Google Scholar 

  4. Aben, H., Integrated Photoelasticity, McGraw-Hill, New York, London, 1979.

    Google Scholar 

  5. Neumann, F.E., Die Gesetze der Doppelbrechung des Lichts in komprimierten oder ungleichförmig erwärmten unkrystallinischen Körpern, Abh. Kön. Akad. Wiss. Berlin, 2, 3, 1843.

    Google Scholar 

  6. Mindlin, R.D. and Goodman, L.E., The optical equations of three-dimensional photoelasticity, J. Appl. Phys., 20, 89, 1949.

    Article  ADS  MATH  Google Scholar 

  7. Kubo, H. and Nagata, R., Considerations of propagation of light waves in photoelastic materials and crystals, Optik, 52, 37, 1978/79.

    Google Scholar 

  8. Mönch, E., Roengvoraphoj, S., Beitrag zur Theorie der Spannungsoptik im elastischen, statischen Bereich bei beliebig veränderlichem Spannungszustand, Ing.-Archiv, 50, 1, 1981.

    Article  Google Scholar 

  9. Iwashimizu, Yu., Ultrasonic wave propagation in deformed isotropic elastic materials, Intern. J. Solids and Struct., 7, 419, 1971.

    Article  MATH  Google Scholar 

  10. Kuske, A., Einführung in die Spannungsoptiz, Wissenschaftliche Verlagsgesellschaft, Stuttgart, 1959.

    Google Scholar 

  11. Srinath, L.S., Scattered Light Photoelasticity, McGraw-Hill, New Delhi, 1983.

    Google Scholar 

  12. Brillaud, J., Lagarde, A., Methode ponctuelle de la photoélasticité tridimensionnelle, Proc. Seventh Internat. Conf. on Exp. Stress Anal., Hdifa, 329, 1982.

    Google Scholar 

  13. Theocaris, P.S., Gdoutos, E.E., Matrix Theory of Photoelasticity, Springer-Verlag, Berlin, Heidelberg, New York, 1979.

    Book  Google Scholar 

  14. Poincaré, H., Théorie mathématique de la lumière, II, Paris, 1892.

    Google Scholar 

  15. Robert, A., The application of Poincaré’s sphere to photoelasticity, Int. J. Solide and Struct., 6, 423, 1970.

    Article  Google Scholar 

  16. Mindlin, R.D., An extension of the photoelastic method of stress measurement to plates in transverse bending, J. Appt. Mech., 8, A187, 1941.

    Google Scholar 

  17. Favre, H., Gilg, B., Sur une méthode purement optique pour la mesure directe des moments dans les plaques minces fléchies, Schweiz. Bauzeitung, 68, 253, 265, 1950.

    Google Scholar 

  18. Kuske, A., Die Auswertung von ebenen spannungsoptischen Versuchen. Scheiben und Platten nach dem Zweischichtverfahren, Forsch. Ingenieurwes., 18, 113, 1952.

    Article  Google Scholar 

  19. Schwieger, H., Ein Auswerteverfahren bei der spannungsoptischen Untersttchung elastischer Platten, Bauplan.-Bautechn., 8, 174, 1954.

    Google Scholar 

  20. Goodier, J.N., Lee, G.H., An extension of the photoelastic method of stress measurement to plates in transverse bending, J. Appl. Mech., 8, 27, 1941.

    Google Scholar 

  21. Lerehenthal, Ch.H., Photoelastic analysis of plates by bonding polaroid foils between plastics, Bull. Res. Council of Israel, GC, 202, 1958.

    Google Scholar 

  22. Aben, H.K., Magnetophotoelasticity — photoelasticity in a magnetic field, Exp. Mech., 10, 97, 1970.

    Article  Google Scholar 

  23. Aben, H.K., Idnurm, S., Stress concentration in bent plates by magnetophotoelasticity, Proc. Fifth Intern. Conf. on Exp. Stress Anal., Udine, 4.5, 1974.

    Google Scholar 

  24. Peterson, R.E., Stress Conentiation Factois, John Wiley and Sons, New York, London, Sydney, Toronto, 1974.

    Google Scholar 

  25. Spalding, I.J., High power lasers — their industrial and fusion applications, Optiec and Laser Technology, 12, 187, 1980.

    Article  ADS  Google Scholar 

  26. Aben, H., Idnurm, S., Josepson, J., Tatarinov, A., Spannungsoptische Effekte im starken Magnetfeld, Wiss. Beiträge, Ingeniewrhochschule Zwickau, sonderheft zur Thema: III Kolloquium Eigenspannungen und Oberflächenverfestigung, 185, 1982.

    Google Scholar 

  27. Kuske, A., Spannungsopische Untersuchung von Schalen, Komissarverlag Hubert Hövelborn, Niederkassel-Mondorf, 1973.

    Google Scholar 

  28. Laermann, K.-H., Das Prinzip der integrierten Photoelastizität, angewandt auf die experimentelle Analyse von Platten mit nichtlinearen Formänderungen, Proc. Seventh Internat. Conf. on Exp. Stress Anal., Haifa, 301, 1982.

    Google Scholar 

  29. Read, W.T., An optical method for measuring the stress in glass bulbs, J. Appl. Phys., 21, 250, 1950.

    Article  ADS  MathSciNet  Google Scholar 

  30. Preston, F.W., Synthesizing polariscopic strain patterns, J. Soc. Glass Technol., 35, 496, 1951.

    Google Scholar 

  31. Ritland, H.N., Stress measurement in cylindrical vessels, J. Amer. Ceram. Soc., 40, 153, 1957.

    Article  Google Scholar 

  32. Poritsky, H., Analysis of thermal stresses in sealed cylinders and the effect of viscous flow during anneal, Phys., 5, 406, 1934.

    Article  MATH  Google Scholar 

  33. O’Rourke, R.C., Saenz, A.W., Quenching stresses in transparent isotropic media and the photoelastic method, Quart. Appl. Math., 8, 303, 1950.

    MATH  MathSciNet  Google Scholar 

  34. Бросман Э., К. опредлению температурных напряжений в цилиндрах методом интегральной фотоупругости, Изв. АН ЭССР, фцзцка, мамемамцка, 25, 418, 1976.

    Google Scholar 

  35. Saunders, M.J., Determination of the stress in optical fibers by means of a polariscope, Rev. Sci. Instrum., 47, 496, 1976.

    Article  ADS  Google Scholar 

  36. Chu, P.L., Whitbread, T., Measurement of stresses in optical fiber and preform, Appl. Optics, 21, 4241, 1982.

    Article  ADS  Google Scholar 

  37. O’Rourke, R.C., Three-dimensional photoelasticity, J. Appl. Phys., 22, 872, 1951.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. Srinath, L.S., Principal-stress differences in transverse planes of symmetry, Exp. Mech., 11, 130, 1971.

    Article  Google Scholar 

  39. Doyle, J.F., Danyluk, H.T., Integrated photoelasticity for axisymmetric problems, Exp. Mech., 18, 215, 1978.

    Article  Google Scholar 

  40. Бросман Э., Полль, В., Тяхт, К., Уточненный учет вращения квазиглав ных напряжений в цилиндрах интегральной фотоупругости кубических монокристаллов, Изв. АН ЭССР, фцзцка, мамемамцка, 32, 179, 1983.

    Google Scholar 

  41. Hecker, F.W., Pindera, J.T., Influence of stress gradient on direction of light propagation in photoelastic specimens, VDI-Berichte, N° 313, 745, 1978.

    Google Scholar 

  42. Sneddon, I.N., Fourier Transforms, McGraw-Hill, New York, 1951.

    Google Scholar 

  43. Khayyat, F.A., Stanley, P., The photoelastic determination of thermal stress concentrations in grooved cylinders with a radial temperature gradient, J. Strsin Anal., 14, 95, 1979.

    Article  Google Scholar 

  44. Инденбом, В.Л., К теории образования напряжений и дислокаций при росте кристаллов, Крцстаппографця, 9, 74, 1964.

    Google Scholar 

  45. Hornstra, J., Penning, P., Birefringence due to residual stress in silicon, Philips Res. Repts., 14, 237, 1959.

    Google Scholar 

  46. Aben, H., Brosman, E., Integrated photoelasticity of cubic single crystals, VDI-Berichte, N° 313, 45, 1978.

    Google Scholar 

  47. Резников, Б.А., О механизме оаразования “аномального” распределения остаточных напряжений при тепловой обработке монокристаллов, Фцзцка твербого тепа, 5, 2526, 1963.

    Google Scholar 

  48. Herman, G.T., Image Reconstruction from Projections, Academic Press, New York, 1980.

    MATH  Google Scholar 

  49. Vest, C.M., Ural, E.A., The role of interferometry and tomography in stress analysis of transparent media, Proc. SESA Spring Meeting, Dearborn, 242, 1981.

    Google Scholar 

  50. Tichonov, A., Arsenine, V., Méthodes de Résolution de problèmez Mal Posés, Mir, Moscou, 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Wien

About this chapter

Cite this chapter

Aben, H. (1987). Integrated Photoelasticity and Its Applications. In: Lagarde, A. (eds) Static and Dynamic Photoelasticity and Caustics. International Centre for Mechanical Sciences, vol 290. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2630-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2630-1_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-81952-4

  • Online ISBN: 978-3-7091-2630-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics