Skip to main content

Stochastic Diffusion Models for Fatigue Crack Growth and Reliability Estimation

  • Chapter
Stochastic Approach to Fatigue

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 334))

Abstract

Crack propagation is a major task in the design and life prediction of fatigue-critical structures such as aircraft, offshore platforms, bridges, etc. Experimental data indicate that fatigue crack propagation involves a large amount of statistical variation and is not adequately modeled deterministically. The lectures presented herein discuss the basic analysis and use of fracture mechanics-based random process fatigue crack growth models that can be represented by Markov diffusion processes. For completeness, the random variable models are presented as a special case of the random process models. The use of the models in fatigue reliability estimation is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ASCE Committee on Fatigue and Fracture Reliability, Series of articles on fatigue and fracture reliability, J. of the Struct. Div., ASCE 108 (ST1) (1982), 3–88.

    Google Scholar 

  2. Bannantine, J. A., J. J. Corner, and J. L. Handrock, Fundamentals of Metal Fatigue Analysis, Prentice-Hall, Englewood Cliffs, New Jersey, 1990.

    Google Scholar 

  3. Bluham, J. I.: Crack propagation laws, in Fracture Mechanics of Aircraft Structures, AGARD-AG-176, 95–109, 1974.

    Google Scholar 

  4. Miller, M. S. and G. P. Gallagher: An analysis of several fatigue crack growth rate descriptions, in Measurements and Data Analysis, ASTM STP 738, 205–251, 1981.

    Google Scholar 

  5. Paris, R C. and F. Erdogan: A critical analysis of crack propagation laws, J. Basic Engrg., Trans. ASME, Series D, 85 (1963), 528–534.

    Article  Google Scholar 

  6. Forman, R. G., et al.: Numerical analysis of crack propagation in cyclic load structures, J. Basic Engrg, Trans. ASME, Series D, 89 (1967), 459–465.

    Article  Google Scholar 

  7. Larsen, J. M., B. J. Schwartz and C. G. Annis, Jr.: Cumulative fracture méchanics under engine spectra, Tech Report AFML-TR-794159, Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio, 1980.

    Google Scholar 

  8. Kung, C. J., and K. Ortiz: Objective comparison of fatigue crack growth laws, in Structural Safety and Reliability, Vol. 2 (A. H-S. Ang, M. Shinozuka, and G. I. Schuëller, eds.) ASCE, New York, 1627–1630, 1990.

    Google Scholar 

  9. Virkler, D. A., B. M. Hillberry, and P. K. Goel: The statistical nature of fatigue crack propagation, J. of Engrg. Mat. and Tech., ASME, 101 (1979), 148–153.

    Article  Google Scholar 

  10. Ghonem, H., and S. Dore: Experimental study of the constant probability crack growth curves under constant amplitude loading, Engrg. Fract. Mech., 27 (1987), 1–25.

    Article  Google Scholar 

  11. Bolotin, V. V.: On safe crack size under random loading, lzvestiia Akademiia Nauk SSSR, Mekhanika Tverdogo Tela, 1 (1980) (in Russian).

    Google Scholar 

  12. Bolotin, V. V.: Lifetime distribution under random loading, Zhurnal Priklandnoi Mekhaniki, Tekhnicheskoi Fiziki, 5 (1980) (in Russian).

    Google Scholar 

  13. Ditlevsen, O.: Random Fatigue Crack Growth — A first passage problem, Engrg. Fract. Mech., 23 (1986), 467–477.

    Article  Google Scholar 

  14. Ditlevsen, O., and R. Olesen: Statistical analysis of the Virkler data on fatigue crack growth, Engrg. Fract. Mech., 25 (1986), 177–195.

    Article  Google Scholar 

  15. Dolinski, K.: Stochastic loading and material inhomogeneity in fatigue crack propagation, Engrg. Fract. Mech., 25 (1986), 809–818.

    Article  Google Scholar 

  16. Dolinski, K.: Stochastic modelling and statistical verification of crack growth under constant amplitude loading, (manuscript) (1991).

    Google Scholar 

  17. Guers, F., and R. Rackwitz: Time-Variant Reliability of Structural Systems subject to Fatigue, in Proc. of ICASP-5, Vol. 1, Vancouver, Canada, 497–505, 1987.

    Google Scholar 

  18. Kozin, F., and J. L. Bodganoff: A Critical Analysis of some Probabilistic Models of Fatigue Crack Growth, Engrg. Fract. Mech., 14 (1981), 59–89.

    Article  Google Scholar 

  19. Un, Y. K., and J. N. Yang: On Statistical Moments of Fatigue Crack Propagation, Engrg. Fract. Mech., 18 (1983), 243–256.

    Article  Google Scholar 

  20. Un, Y. K., and J. N. Yang: A Stochastic Theory of Fatigue Crack Propagation, J. of the AIAA, 23 (1985), 117–124.

    Article  Google Scholar 

  21. Madsen, H. O.: Deterministic and probabilistic models for damage accumulation due to time varying loading, DIALOG 5–82, Danish Engrg. Academy, Lyngby, Denmark, 1983.

    Google Scholar 

  22. Madsen, H. O.: Random fatigue crack growth and inspection, in Structural Safety and Relia bility, Vol. 1, Proc. of ICOSSAR ‘85, Kobe, Japan (l. Konishi, A. H-S. Ang, and M. Shinozuka, eds.), Elsevier, Amsterdam, The Netherlands, 475–484, 1985.

    Google Scholar 

  23. Madsen, H. O., S. Krenk, and N. C. Lind, Methods of Structural Safety, Prentice-Hall, Englewood Cliffs, New Jersey, 1986.

    Google Scholar 

  24. Ortiz, K., and A. S. Kiremidjian: Time series analysis of fatigue crack growth data, Engrg. Fract. Mech., 24 (1986), 657–676.

    Article  Google Scholar 

  25. Ortiz, K., and A. S. Kiremidjian: Stochastic modeling of fatigue crack growth, Engrg. Fract. Mech., 29 (1988), 657–676.

    Google Scholar 

  26. Sobczyk, K.: On the Markovian models for fatigue accumulation, J. de Mécanique Theorique et Appliqué, ( Numor Special ) (1982), 147–160.

    Google Scholar 

  27. Sobczyk, K.: Stochastic modeling of fatigue crack growth, in Proc. of the IUTAM Symposium on ‘Probabilistic Methods in Mechanics of Solids and Structures,’ Stockholm, Sweden, Springer-Verlag, Berlin, 111–119, 1984.

    Google Scholar 

  28. Sobczyk, K.: Modelling of random fatigue crack growth, Engrg. Fract. Mech., 24 (1986), 609–623.

    Article  Google Scholar 

  29. Solomos, G. P.: First-passage solutions in fatigue crack propagation, Prob. Engrg. Mech., 4 (1989), 32–39.

    Article  Google Scholar 

  30. Spencer, B. F., Jr., and J. Tang: A Markov process model for fatigue crack growth, J. of Engrg. Mech., ASCE, 114 (1988), 2134–2157.

    Article  Google Scholar 

  31. Spencer, B. F., Jr., J. Tang, and M. E. Artley: A stochastic approach to modeling fatigue crack growth, J. of the AIAA, 27 (1989), 1628–1635.

    Article  Google Scholar 

  32. Tang, J., and B. F. Spencer, Jr.: Reliability solution for the stochastic fatigue crack growth problem, Engrg. Fract. Mech., 34 (1989), 419–433.

    Article  Google Scholar 

  33. Tanaka, H., and A. Tsurui: Random propagation of a semi-elliptical surface crack as a bivariate stochastic process, Engrg. Fract. Mech., 33 (1989), 787–800.

    Article  Google Scholar 

  34. Tsurui, A., and H. Ishikawa: Application of Fokker-Planck equation to a stochastic fatigue crack growth model, Struct. Safety, 4 (1986), 15–29.

    Google Scholar 

  35. Tsurui, A., J. Nienstedt, G.i. Schuëller, and H. Tanaka: Time variant structural reliability using diffusive crack growth models, Engrg. Fract. Mech., 34 (1989), 153–167.

    Article  Google Scholar 

  36. Veers, P. J.: Fatigue crack growth due to random loading, Ph.D. Dissertation, Department of Mechanical Engrg., Stanford University, Stanford, California, 1987.

    Google Scholar 

  37. Veers, P. J., S. R. Winterstein, D. V. Nelson, and C. A. Cornell: Variable amplitude load models for fatigue damage and crack growth, in Development of Fatigue Loading Spectra, STP-1006, ASTM, Philadelphia, 172–197, 1989.

    Google Scholar 

  38. Winterstein, S. R., and P. S. Veers: Diffusion models of fatigue crack growth with sequence effects due to stationary random loads, Structural Safety and Reliability, Vol. 2 (A. H-S. Ang, M. Shinozuka, and G. I. Schuëller, eds.), ASCE, New York, 1523–1530, 1990.

    Google Scholar 

  39. Yang, J. N., G. C. Salivar, and C. G. Annis: Statistical modeling of fatigue-crack growth in a nickel-based superalloy, Engrg. Fract. Mech., 18 (1983), 257–270.

    Article  Google Scholar 

  40. Yang, J. N., and R. C. Donath: Statistical crack propagation in fastener holes under spectrum loading, J. of Aircraft, AIAA, 20 (1983), 1028–1032.

    Article  Google Scholar 

  41. Yang, J. N., W. H. Hsi, and S. D. Manning: Stochastic crack propagation with application to durability and damage tolerance analyses, in Probabilistic Fracture Mechanics and Reliability ( J. Provan, ed.) Martinus Nijhoff Publishers, The Netherlands, 1987.

    Google Scholar 

  42. Sobczyk, K. and B.F. Spencer, Jr.: Random Fatigue: From Data to Theory, Academic Press, 1992.

    MATH  Google Scholar 

  43. Manning, S. D., and J. N. Yang: USAF Durability Design Handbook: Guidelines for the Analysis and Design of Durable Aircraft Structures, Technical Report AFFDL-TR-84–3027, Wright-Patterson Air Force Base, Ohio, February, 1984.

    Google Scholar 

  44. Yang, J. N., and S. D. Manning: Distribution of equivalent initial flaw size, in Proc. of the Reliability and Maintainability Conference, 112–120, 1980.

    Google Scholar 

  45. PROBAN-2, A.S. Veritas Research, Det norske Veritas, Oslo, Norway, 1989.

    Google Scholar 

  46. Sobczyk, K., Stochastic Differential Equations with Application to Physics and Engrg., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991.

    Google Scholar 

  47. Cox, D. R., and H. D. Miller: The Theory of Stochastic Processes, Chapman and Hall, London, 1977.

    MATH  Google Scholar 

  48. Oh, K. P.: “A diffusion model for fatigue crack growth,” Proc. of Royal Soc. of London, A367 (1979), 47–58.

    Article  Google Scholar 

  49. Fichera, G.: On a unified theory of boundary value problems for elliptic-parabolic equations of second order, in Boundary Problems in Differential Equations (R. E. Langer, ed.), University of Wisconsin Press, Madison, Wisconsin, 97–102, 1960.

    Google Scholar 

  50. Enneking, T. J., B. F. Spencer, Jr., and I. P. E. Kinnmark, “Stationary two-state variable problems in stochastic mechanics,” J. of Engrg. Mech., ASCE 116 (1990), 334–358.

    Google Scholar 

  51. Ostergaard, D. F., and B. M. Hiliberry: Characterization of variability in fatigue crack propagation data, in Probabilistic Methods for Design and Maintenance of Structures, in STP-798, ASTM, Philadelphia, 97–115, 1983.

    Google Scholar 

  52. Ferguson, R. I.: River loads underestimated by rating curves, Water Resources Res., 22 (1986), 74–76.

    Article  Google Scholar 

  53. ASTM: Appendix I, E647–86a, Recommended data reduction techniques, in Annual Book of ASTM Standards. Vol. 3.01: Metals Test Methods and Analytical Procedures, ASTM, Philadelphia, 919–920, 1987.

    Google Scholar 

  54. IMSL, The International Math and Statistics Subroutine Library, IMSL, Inc., Houston, Texas, 1984.

    Google Scholar 

  55. Johnson, W. S.: Multi-parameter yield zone model for predicting spectrum crack growth, in Methods and Models for Predicting Fatigue Crack Growth under Random Loading (J. B. Chang, and C. M. Hudson, eds.), STP-748, ASTM, Philadelphia, 85–102, 1981.

    Chapter  Google Scholar 

  56. Enneking,T. J.: On the stochastic fatigue crack growth problem, Ph.D. Dissertation, Department of Civil Engineering, University of Notre Dame, Notre Dame, Indiana, 1991.

    Google Scholar 

  57. MIL-A-87221: General Specifications for Aircraft Structures, U. S. Air Force Aeronautical Systems Division, Wright-Patterson Air Force Base, Ohio, 1985.

    Google Scholar 

  58. Madsen, H. O., R. Skjong, A. G. Tallin, and F. Kirkemo: Probabilistic fatigue crack growth analysis of offshore structures with reliability updating through inspection, in Proc. of the Marine Structural Reliability Symposium, Arlington, Virginia, 45–55, 1987.

    Google Scholar 

  59. Yang, J. N., and S. Chen: Fatigue reliability of structural components under scheduled inspection and repair maintenance, Probabilistic Methods in Mechanics of Solids and Structures, Proc. of the IUTAM Symposium, Stockholm, 1984, Springer-Verlag, Berlin, 559–568, 1985.

    Google Scholar 

  60. Berens, A. R, and R W. Hovey: Evaluation of nde reliability characterization, Report No. AFWAL-TR-81–4160, Volume I, University of Dayton Research Institute, Dayton, Ohio, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Wien

About this chapter

Cite this chapter

Spencer, B.F. (1993). Stochastic Diffusion Models for Fatigue Crack Growth and Reliability Estimation. In: Sobczyk, K. (eds) Stochastic Approach to Fatigue. International Centre for Mechanical Sciences, vol 334. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2622-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2622-6_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82452-8

  • Online ISBN: 978-3-7091-2622-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics