Skip to main content

Thermocapillary Convection

  • Conference paper
Free Surface Flows

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 391))

Abstract

The fluid motion induced by surface tension gradients due to temperature variations along liquid/gas interfaces is reviewed. Attention is focussed on the thermocapillary driven flow inside the liquid rather than on free surface deformations. The general equations for an incompressible Newtonian liquid surrounded by a passive gas are introduced followed by some basic considerations of the thermocapillary flow near the contact point. The Stokes flow in differentially heated cylindrical liquid bridges is calculated revealing the fundamental flow structures when the thermocapillary surface stresses are low. As general characteristics of thermocapillary flows the boundary layer scalings for certain limits of the Marangoni and Prandtl numbers are derived. After a brief review of hydrothermal waves in plane layers two paradigms for thermocapillary driven convection, heated cylindrical liquid bridges and rectangular cavities, are considered in more detail. Flow structures, instabilities, dynamics, and side wall effects are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. E. Striven and C. V. Sternling. The Marangoni effects. Nature 187, 186 (1960).

    Article  ADS  Google Scholar 

  2. D. T. J. Hurle, editor. Handbook of Crystal Growth. North Holland 1994.

    Google Scholar 

  3. Ch. E. Chang and W. R. Wilcox. Inhomogeneities due to thermocapillary flow in floating zone melting. J. Crystal Growth 28, 8 (1975).

    Article  ADS  Google Scholar 

  4. C. E. Chang and W. R. Wilcox. Analysis of surface tension driven flow in floating zone melting. Int. J. Heat Mass Transfer 19, 355 (1976).

    Article  ADS  MATH  Google Scholar 

  5. L. D. Landau and E. M. Lifshitz. Hydrodynamik volume VI of Lehrbuch der Theoretischen Physik. Akademie Verlag 1986.

    Google Scholar 

  6. F. Dupret, P. Nicodème, Y. Ryckmans, P. Wouters, and M. J. Crochet. Global modelling of heat transfer in crystal growth furnices. Int. J. Heat Mass Transfer 33, 1849 (1990).

    Article  MATH  Google Scholar 

  7. A. D. Myshkis, V. G. Babskii, N. D. Kopachevskii, and L. A. Slobozhanin. Low-Gravity Fluid Mechanics. Springer 1987.

    Google Scholar 

  8. F. Raynal. Exact relation between spatial mean enstrophy and dissipation in confined incompressible flows. Phys. Fluids 8, 2242 (1996).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. D. Canright. Thermocapillary flow near a cold wall. Phys. Fluids 6, 1415 (1994).

    Article  ADS  MATH  Google Scholar 

  10. H. C. Kuhhnann, C. Nienhüser, and H. J. Rath. The local flow in a wedge between a rigid wall and a surface of constant shear stress. J. Eng. Math. ( 1998. submitted).

    Google Scholar 

  11. H. K. Moffatt and B. R. Duffy. Local similarity solutions and their limitations. J. Fluid Mech. 96, 299 (1980).

    Article  ADS  MATH  Google Scholar 

  12. W. W. Schultz and C. Gervasio. A study of the singularity of the die swell problem. Q. J. Appl. Math. 43, 407 (1990).

    Article  MATH  Google Scholar 

  13. E. B. Dussan V., E. Ramé, and S. Garoff. On identifying the appropriate boundary conditions at a moving contact line: An experimental investigation. J. Fluid Mech. 230, 97 (1991).

    Article  ADS  Google Scholar 

  14. Y. D. Shikhmurzaev. Moving contact lines in liquid/liquid/solid systems. J. Fluid Mech. 334, 211 (1997).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. J. Koplik and J. R. Banavar. Corner flow in the sliding plate problem. Phys. Fluids 7, 3118 (1995).

    Article  ADS  MATH  Google Scholar 

  16. R. C. T. Smith. The bending of a semi-infinite strip. Austral. J. Sci. Res. 5, 227 (1952).

    ADS  Google Scholar 

  17. D. D. Joseph. The convergence of biorthogonal series for biharmonic and Stokes flow edge problems. Part I. SIAM J. Appl. Math. 33, 337 (1977).

    MATH  Google Scholar 

  18. D. D. Joseph and L. Sturges. The convergence of biorthogonal series for biharmonic and Stokes flow edge problems: Part II. SIAM J. Appl. Math. 34, 7 (1978).

    Google Scholar 

  19. H. C. Kuhlmann. Small amplitude thermocapillary flow and surface deformations in a liquid bridge. Phys. Fluids A 1, 672 (1989).

    Article  ADS  MATH  Google Scholar 

  20. A. P. Hillman and H. E. Salzer. The roots of sin. Phil. Mag. 34, 575 (1943).

    MATH  MathSciNet  Google Scholar 

  21. C. I. Robbins and R. C. T. Smith. A table of roots of sin. Phil. Mag. 39, 1004 (1948).

    MathSciNet  Google Scholar 

  22. P. F. Papkovich. Über eine Form der Lüsung des biharmonischen Problems für das Rechteck. C. (Dokl.) Acad. Sci,USSR 27, 334 (1940).

    Google Scholar 

  23. J. Fadle. Die Selbstspannungs-Eigenwertfunktionen der quadratischen Scheibe. Ing. Archiv 11, 125 (1941).

    Article  MathSciNet  Google Scholar 

  24. A. M. J. Davis. Thermocapillary convection in liquid bridges: Solution structure and eddy motions. Phys. Fluids A 1, 475 (1989).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. A. Rybicki and J. M. Floryan. Thermocapillary effects in liquid bridges. I. Thermocapillary convection. Phys. Fluids 30, 1956 (1987).

    Article  ADS  MATH  Google Scholar 

  26. H. K. Moffatt. Viscous and resistive eddies near a sharp corner. J. Fluid Mech. 18, 1 (1964).

    Article  ADS  MATH  Google Scholar 

  27. F. Pan and A. Acrivos. Steady flows in rectangular cavities. J. Fluid Mech. 28, 643 (1967).

    Article  ADS  Google Scholar 

  28. P. G. Drazin and W. H. Reid. Hydrodynamic Stability. Cambridge University Press 1981.

    Google Scholar 

  29. Rayleigh, Lord. On the instability of jets. Proc. London Math. Soc. 10, 4 (1879).

    MATH  Google Scholar 

  30. M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. Dover 1972.

    Google Scholar 

  31. S. Ostrach. Motion induced by capillarity (V. G. Levich Festschrift). In Spalding, editor, Physico-chemical Hydrodynamics volume 2. Advance Publications 1977.

    Google Scholar 

  32. L. G. Napolitano. Marangoni boundary layers. In Proceedings of the IIIrd European Symposium on Materials Science in Space page 249. ESA SP-142 1979.

    Google Scholar 

  33. M. B. Glauert. The wall jet. J. Fluid Mech. 1, 625 (1956).

    Article  ADS  MathSciNet  Google Scholar 

  34. S. J. Cowley and S. H. Davis. Viscous thermocapillary convection at high Marangoni numbers. J. Fluid Mech. 135, 175 (1983).

    Article  ADS  MATH  Google Scholar 

  35. J. F. Mercier and C. Normand. Buoyant-thermocapillary instabilities of differentially heated liquid layers. Phys. Fluids 8, 1433 (1996).

    Article  ADS  MATH  Google Scholar 

  36. P. M. Parmentier, V. C. Regnier, and G. Lebon. Buoyant-thermocapillary instabilities in medium-Prandtl-number fluid layers subject to a horizontal temperature gradient. Int. J. Heat Mass Transfer 36, 2417 (1993).

    Article  MATH  Google Scholar 

  37. J. Priede and G. Gerbeth. Influence of thermal boundary conditions on the stability of thermocapillary-driven convection at low Prandtl numbers. Phys. Fluids 9, 1621 (1997).

    Article  ADS  Google Scholar 

  38. M. K. Smith and S. H. Davis. Instabilities of dynamic thermocapillary liquid layers. Part 1. Convective instabilities. J. Fluid Mech. 132, 119 (1983).

    Article  ADS  MATH  Google Scholar 

  39. M. K. Smith and S. H. Davis. Instabilities of dynamic thermocapillary liquid layers. Part 2. Surface-wave instabilities. J. Fluid Mech. 132, 145 (1983).

    Article  ADS  MATH  Google Scholar 

  40. M. K. Smith. The nonlinear stability of dynamic thermocapillary liquid layers. J. Fluid Mech. 194, 391 (1988).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. S. H. Davis. Thermocapillary instabilities. Annu. Rev. Fluid Mech. 19, 403 (1987).

    Article  ADS  MATH  Google Scholar 

  42. M. K. Smith. Instability mechanisms in dynamic thermocapillary liquid layers. Phys. Fluids 29, 3182 (1986).

    Article  ADS  Google Scholar 

  43. C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zhang. Spectral Methods in Fluid Dynamics. Springer 1988.

    Google Scholar 

  44. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes ( FORTRAN ). Cambridge University Press 1989.

    MATH  Google Scholar 

  45. M. K. Smith. The instabilities of thermocapillary shear layers. PhD thesis Northwestern University 1982.

    Google Scholar 

  46. J. R. A. Pearson. On convection cells induced by surface tension. J. Fluid Mech. 4, 489 (1958).

    Article  ADS  MATH  Google Scholar 

  47. A. K. Sen and S. H. Davis. Steady thermocapillary flows in two-dimensional slots. J. Fluid Mech. 121, 163 (1982).

    Article  ADS  MATH  Google Scholar 

  48. C. De Saedeleer, A. Garcimartin, G. Chavepeyer, J. K. Platten, and G. Lebon. The instability of a liquid layer heated from the side when the upper surface is open to the air. Phys. Fluids 8, 670 (1996).

    Article  ADS  Google Scholar 

  49. P. Laure, B. Roux, and H. Ben Hadid. Nonlinear study of the flow in a long rectangular cavity subjected to thermocapillary effect. Phys. Fluids A 2, 516 (1990).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  50. D. Villers and J. K. Platten. Coupled buoyancy and Marangoni convection in acetone: Experiments and comparison with numerical simulations. J. Fluid Mech. 234, 487 (1992).

    Article  ADS  Google Scholar 

  51. Kelvin, Lord. On a disturbing infinity in Lord Rayleigh’s solution for waves in a plane vortex stream. Nature 23, 45 (1880).

    Article  Google Scholar 

  52. D. Schwabe, U. Möller, J. Schneider, and A. Scharmann. Instabilities of shallow dynamic thermocapillary liquid layers. Phys. Fluids 4, 2368 (1992).

    Article  ADS  Google Scholar 

  53. J. Schneider. Strukturen thermokapillarer Konvektion in einem Ringspalt. PhD thesis Universität Giessen 1995.

    Google Scholar 

  54. M. Wanschura. Lineare Instabilitäten kapillarer and natürlicher Konvektion in zylindrischen Flüssigkeitsbrücken. PhD thesis ZARM — Universität Bremen 1996.

    Google Scholar 

  55. C. A. Jones. Numerical methods for the transition to wavy Taylor vortices. J. Comput. Phys. 61, 321 (1985).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  56. D. J. Acheson. Elementary Fluid Dynamics. Oxford University Press 1990.

    Google Scholar 

  57. B. M. Carpenter and G. M. Homsy. High Marangoni number convection in a square cavity: Part II. Phys. Fluids 2, 137 (1990).

    Article  ADS  MATH  Google Scholar 

  58. G. K. Batchelor. On steady laminar flow with closed streamlines at large Reynolds numbers. J. Fluid Mech. 1, 177 (1956).

    Google Scholar 

  59. R. Velten, D. Schwabe, and A. Scharmann. The periodic instability of thermocapillary convection in cylindrical liquid bridges. Phys. Fluids 3, 267 (1991).

    Article  ADS  Google Scholar 

  60. F. Preisser, D. Schwabe, and A. Scharmann. Steady and oscillatory thermocapillary convection in liquid columns with free cylindrical surface. J. Fluid Mech. 126, 545 (1983).

    Article  ADS  Google Scholar 

  61. M. Wanschura, H. C. Kuhlmann, and H. J. Rath. Linear stability of two-dimensional combined buoyant-thermocapillary flow in cylindrical liquid bridges. Phys. Rev. E 55, 7036 (1997).

    Article  ADS  Google Scholar 

  62. M. Levenstam and G. Amberg. Hydrodynamic instabilities of thermocapillary flow in a half-zone. J. Fluid Mech. 297, 357 (1995).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  63. G. P. Neitzel, K.-T. Chang, D. F. Jankowski, and H. D. Mittelmann. Linear-stability theory of thermocapillary convection in a model of the float-zone crystal-growth process. Phys. Fluids 5, 108 (1993).

    Article  ADS  MATH  Google Scholar 

  64. J.-J. Xu and S. H. Davis. Convective thermocapillary instabilities in liquid bridges. Phys. Fluids 27, 1102 (1984).

    Article  ADS  MATH  Google Scholar 

  65. S. E. Widnall and Ch.-Y. Tsai. The instability of the thin vortex ring of constant vorticity. Proc. Roy. Soc. London 287, 273 (1977).

    ADS  MATH  MathSciNet  Google Scholar 

  66. M. Prange. Stabilisierung thermokapillarer Konvektion in zylindrischen Flüssigkeitsbrücken mittels axialer Magnetfelder. Master’s thesis ZARM — Universität Bremen 1997.

    Google Scholar 

  67. E. L. Koschmieder. Bénard Cells and Taylor Vortices. Cambridge University Press 1993.

    Google Scholar 

  68. M. C. Cross and P. G. Hohenberg. Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851 (1993).

    Article  ADS  Google Scholar 

  69. J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields volume 42 of Applied Mathematical Sciences. Springer 1983.

    Google Scholar 

  70. R. Rupp, G. Müller, and G. Neumann. Three-dimensional time dependent modelling of the Marangoni convection in a zone melting configuration for GaAs. J. Crystal Growth 97, 34 (1989).

    Article  ADS  Google Scholar 

  71. G. Chen, A. Lizée, and B-Roux. Bifurcation analysis of the thermocapillary convection in cylindrical liquid bridges. J. Crystal Growth 180, 638 (1997).

    Article  ADS  Google Scholar 

  72. K. A. Muehlner, M. F. Schatz, V. Petrov, W. D. McCormick, J. B. Swift, and H. L. Swinney. Observation of helical traveling-wave convection in a liquid bridge. Phys. Fluids 9, 1850 (1997).

    Article  ADS  Google Scholar 

  73. J. D. Crawford and E. Knobloch. Symmetry and symmetry-breaking bifurcations in fluid dynamics. Annu. Rev. Fluid Mech. 23, 341 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  74. J. Leypoldt, H. C. Kuhlmann, and H. J. Rath. Three-dimensional numerical simulation of thermocapillary flows in cylindrical liquid bridges. Submitted to J. Fluid Mech. 1998.

    Google Scholar 

  75. R. Savino and R. Monti. Oscillatory Marangoni convection in cylindrical liquid bridges. Phys. Fluids 8, 2906 (1996).

    Article  ADS  MATH  Google Scholar 

  76. J. Xu and A. Zebib. Oscillatory two-and three-dimensional thermocapillary convection. Submitted to J. Fluid Mech. 1997.

    Google Scholar 

  77. H.-Ch. Hsieh. A numerical study of three-dimensional surface tension driven convection with free surface deformations. In Fluid Mechanics Phenomena in Micro-gravity volume AMD 154/FED 142 page 85. ASME 1992.

    Google Scholar 

  78. D. D. Joseph and L. Sturges. The free surface on a liquid filled trench heated from its side. J. Fluid Mech. 69, 565 (1975).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  79. A. Zebib, G. M. Homsy, and E. Meiburg. High Marangoni number convection in a square cavity. Phys. Fluids 28, 3467 (1985).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  80. R. V. Birikh. Thermocapillary convection in a horizontal layer of liquid. J. Appl. Mech. Tech. Phys. 7, 43 (1966).

    Article  ADS  Google Scholar 

  81. M. Strani, R. Piva, and G. Graziani. Thermocapillary ‘convection in a rectangular cavity: Asymptotic theory and numerical simulation. J. Fluid Mech. 130, 347 (1983).

    Article  ADS  MATH  Google Scholar 

  82. H. Ben Hadid and B. Roux. Thermocapillary convection in long horizontal layers of low-Prandtl-number melts subject to a horizontal temperature gradient. J. Fluid Mech. 221, 77 (1990).

    Google Scholar 

  83. H. Schlichting. Grenzschichttheorie. Springer 1968.

    Google Scholar 

  84. M. Ohnishi, H. Azuma, and T. Doi. Computer simulation of oscillatory Marangoni flow. Acta Astronautica 26, 685 (1992).

    Article  ADS  Google Scholar 

  85. H. Ben Hadid and B. Roux. Buoyancy-and thermocapillary-driven flows in differentially heated cavities for low-Prandtl-number fluids. J. Fluid Mech. 235, 1 (1992).

    Article  ADS  MATH  Google Scholar 

  86. M. Mundrane and A. Zebib. Oscillatory buoyant thermocapillary flow. Phys. Fluids 6, 3294 (1994).

    Article  ADS  MATH  Google Scholar 

  87. L. J. Peltier and S. Biringen. Time-dependent thermocapillary convection in a rectangular cavity: Numerical results for a moderate Prandtl number fluid. J. Fluid Mech. 257, 339 (1993).

    Article  ADS  MATH  Google Scholar 

  88. V. Saß, H. C. Kuhlmann, and H. J. Rath. Investigation of three-dimensional thermocapillary convection in a cubic container by a multi-grid method. Int. J. Heat Mass Transfer 39, 603 (1996).

    Article  MATH  Google Scholar 

  89. U. T. Bödewadt. Die Drehströmung über festem Grunde. Z. Angew. Math. Mech. 20, 241 (1940).

    Article  Google Scholar 

  90. P. Gillon and G. M. Homsy. Combined thermocapillary-buoyancy convection in a cavity: An experimental study. Phys. Fluids 8, 2953 (1996).

    Article  ADS  Google Scholar 

  91. D. Schwabe and J. Metzger. Coupling and separation of buoyant thermocapillary convection. J. Crystal Growth 97, 23 (1989).

    Article  ADS  Google Scholar 

  92. F. Daviaud and J. M. Vince. Travelling waves in a fluid layer subjected to a horizontal temperature gradient. Phys. Rev. E 48, 4432 (1993).

    ADS  Google Scholar 

  93. M. Mundrane and A. Zebib. Two-and three-dimensional buoyant thermocapillary convection. Phys. Fluids 5, 810 (1993).

    Article  ADS  MATH  Google Scholar 

  94. H. C. Kuhlmann, M. Wanschura, and H. J. Rath. Flow in two-sided lid-driven cavities: Non-uniqueness, instabilities, and cellular structures. J. Fluid Mech. 336, 267 (1997).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  95. H. C. Kuhlmann, M. Wanschura, and H. J. Rath. Elliptic instability in two-sided lid-driven cavity flow. Eur. J. Mech., B/Fluids (to appear) (1998).

    Google Scholar 

  96. B. J. Bayly. Three-dimensional instability of elliptical flow. Phys. Rev. Lett. 57, 2160 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  97. R. T. Pierrehumbert. Universal short-wave instability of two-dimensional eddies in an inviscid fluid. Phys. Rev. Lett. 57, 2157 (1986).

    Article  ADS  Google Scholar 

  98. F. Waleffe. On the three-dimensional instability of strained vortices. Phys. Fluids 2, 76 (1990).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  99. M. G. Braunsfurth and G. M. Homsy. Combined thermocapillary-buoyancy convection in a cavity. Part II. An experimental study. Phys. Fluids 9, 1277 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Wien

About this paper

Cite this paper

Kuhlmann, H.C. (1998). Thermocapillary Convection. In: Kuhlmann, H.C., Rath, HJ. (eds) Free Surface Flows. International Centre for Mechanical Sciences, vol 391. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2598-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2598-4_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83140-3

  • Online ISBN: 978-3-7091-2598-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics