Skip to main content

Thin Film Dynamics

  • Conference paper

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 391))

Abstract

Thin films1 possess two radically distinct typical scales associated with their transverse and their longitudinal dimensions. Two distinct dynamics are thus associated to these length scales: transverse or longitudinal dispersive waves linked to the film thickness, and longitudinal quasi-two-dimensional (2D) motion scaling on the film length. The physics of both waves and 2D motion are studied here. The response of a film to a localized impulse is computed, and the behaviour is interpreted in the light of group-velocity notions. When air is blown on the film, the waves turn into instability modes, as demonstrated by a simple pressure argument in the limit of small density ratios. The different behavior observed in the case of a water jet and in the case of air blowing on a film is explained by introducing the equivalent of group velocity for instability waves, which naturally leads to discriminate between the absolute and the convective type of instability. In the long-wave limit, waves become similar to the elastic waves propagating on a stretched membrane. In recent experiments, Couder [7] and Gharib [13] use soap films as a two-dimensional fluid. In the present paper, we show that the necessary condition for the film to comply to Navier-Stokes equations is that the typical flow velocity be small compared to the Marangoni elastic wave velocity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. M. Bender and S. A. Orszag, Advanced mathematical methods for scientists and engineers, McGraw-Hill, Inc., New york, 1978.

    MATH  Google Scholar 

  2. A. Bers, Linear waves and instabilities in Physique des Plasmas, edited by C. DeWitt and J. Peyraud, Gordon and Breach, New York, 117, 1975.

    Google Scholar 

  3. C.V. Boys, Soap bubbles and the forces which mould them, Society for promoting Christian knowledge, London and Anchor books, New York, 1890.

    Google Scholar 

  4. R. J. Briggs, Electron-stream interaction with plasmas, Addison-Wesley Publishing Company, London, 1969.

    Google Scholar 

  5. J.-M. Chomaz and B. Cathalau, Soap films as two-dimensional classical fluids, Physics Review A, 41 (4), 2243, 1990.

    Article  ADS  Google Scholar 

  6. J.-M. Chomaz, P. Huerre and L. G. Redekopp, A frequency selection criterion in spatially developing flows, Studies in Applied Mathematics, 84, 119, 1991.

    MATH  MathSciNet  Google Scholar 

  7. J.M. Chomaz and M. Costa Y. Couder, The observation of a shear flow instability in a rotating system with a soap membrane, Le Journal de Physique - Lettres, 42 (19), 429, 1981.

    Article  Google Scholar 

  8. Y. Couder and C. Basdevant, Experimental and numerical study of vortex couples in two-dimensional flows, Journal of Fluid Mechanics 173, 225, 1986.

    Article  ADS  Google Scholar 

  9. Y. Couder, J.M. Chomaz and M. Rabaud, On the hydrodynamics of soap films, Physica D, 37, 384, 1989.

    Article  ADS  Google Scholar 

  10. L. de Luca and M. Costa, Stationary waves on plane liquid sheets falling vertically, European Journal of Mechanics, B/Fluids, 16, 75, 1997.

    MATH  Google Scholar 

  11. L. de Luca and M. Costa, Instability of a spatially developing liquid sheet, Journal of Fluid Mechanics, 331, 127, 1997.

    Article  ADS  MATH  Google Scholar 

  12. P.G. Drazin and W.H. Reid, Hydrodynamic Stability. Cambridge university Press, Cambridge, 1981.

    MATH  Google Scholar 

  13. M. Gharib and P. Derango, A liquid film tunnel to study 2D flows, Physica D, 37, 406, 1989.

    Article  ADS  Google Scholar 

  14. J.W. Gibbs, The collected works, Longmans Green, New York, 1931.

    Google Scholar 

  15. P. Huerre and P.A. Monkewitz, Local and global instabilities in spatially developing flows, Annual Review of Fluid Mechanics, 22, 473, 1990.

    Article  ADS  MathSciNet  Google Scholar 

  16. I.B. Ivanov, Thin liquid films. Marcel Dekker, Inc., New York Basel, 1988.

    Google Scholar 

  17. J.G.H. Joosten, Solitary waves and solitons in liquid films, Journal of Chemical Physics, 82, 2427, 1985.

    Article  ADS  Google Scholar 

  18. H. Kellay, X. Wu and W. Golburg, Experiments with turbulent soap films, Physics Review Letters, 74, 3875, 1995.

    Google Scholar 

  19. H. Lamb, Hydrodynamics, 4th ed, Cambridge University Press, Cambridge, 1916.

    Google Scholar 

  20. J. Lighthill, Waves in Fluids, Cambridge University Presss, Cambridge, 1978.

    MATH  Google Scholar 

  21. T. Loiseleux, J.-M. Chomaz and P. Huerre, The effect of swirl on jets and wakes: linear instability of the Rankine vortex with axial flow, Physics of Fluids, 10 (5), 1120, 1998

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. J. Lucassen, M. Van Den Tempel, A. Vrij and F. Hesselink, Proc. K. Ned. Akad. Wetensch. B, 73, 109, 1970.

    Google Scholar 

  23. K.J. Mysels, K. Shinoda and S. Frankel, Soap films, studies of their thinning, Pergamon Press, New-York, 1959.

    Google Scholar 

  24. D. H. Peregrine, Interaction of water waves and currents, Advances in Applied Mechanics, 16, 9, 1976.

    Google Scholar 

  25. J. Plateau, Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires, Gauthier Villars, Paris, 1870.

    Google Scholar 

  26. A.L. Rusanov and V.V. Krotov, Gibbs elasticity of liquid films, Progress in Surface and Membrane Science, 13, 415, 1979.

    Article  Google Scholar 

  27. H. B. Squire, Investigation of the stability of a moving liquid film, British Journal of Applied Physics, 4, 167, 1953.

    Article  ADS  Google Scholar 

  28. G. I. Taylor, The dynamics of thin sheets of fluid, II - waves on fluid sheets, Proceedings of the Royal Society of London - A, 253, 296, 1959.

    Article  ADS  Google Scholar 

  29. G. B. Whitam, Linear and nonlinear waves, Wiley interscience, New york, 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Wien

About this paper

Cite this paper

Chomaz, J.M., Costa, M. (1998). Thin Film Dynamics. In: Kuhlmann, H.C., Rath, HJ. (eds) Free Surface Flows. International Centre for Mechanical Sciences, vol 391. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2598-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2598-4_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83140-3

  • Online ISBN: 978-3-7091-2598-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics