Skip to main content

Non-Isothermal Flow

  • Chapter
Environmental Geomechanics

Abstract

Thermally induced moisture movement occurs in a range of engineering applications, covering for example the disposal of high level nuclear waste (Pollock, 1986), soil warming for agricultural purposes (Dayan et al., 1984), underground heating of soil, heat losses from ground floor slabs of buildings and basements (Rees et al., 2001; Shen and Ramsey, 1988), the stability of buried electrical cables (Anders and Radhakrishna, 1988) and of course evaporation from the surface of a soil leading to shrinkage problems. Recent developments in clean-up technologies for contaminated land have also required analysis of this class of problem (Lee et al., 1999). In all these cases, appropriate models of soil behaviour are required for adequate engineering design to proceed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Hadi, O.N., (1978). Flow of heat and water around underground power cables. Thesis presented to University of Berkeley, California, in partial fulfilment of the requirements for the degree of Doctor of Philosophy.

    Google Scholar 

  • Alonso, E.E., Gens, A. and Hight, D.W. (1987). Special Problem Soils–General Report (Session 5), Proc. 9th European Conf. on Soil Mechanics and Foundation Engineering, Dublin, 3: 1087–1146, Edts., Hanrahan, E.T., Orr, T.L.L. and Widdis, T.F.

    Google Scholar 

  • Alonso, E.E., Batle, F, Gens, A. and Lloret, A. (1988). Consolidation analysis of partially saturated soils–Application to earthdam construction, Num. Meth. in Geomech., Innsbruck, 1303–1308.

    Google Scholar 

  • Alonso, E.E., Gens, A., Josa, A. (1990). A constitutive model for partially saturated soils, Geotechnique. 40, 405–430.

    Article  Google Scholar 

  • Anders, G.J., Radhakrishna, H.S. (1988). Computation of temperature, field and moisture content in the vicinity of current carrying underground power cables. IEE Proc., 135, 51–62.

    Google Scholar 

  • Bear, J. (1979). Hydraulics of Groundwater. McGraw-Hill, New York.

    Google Scholar 

  • Dayan, A., Merbaum, A.H. and Segal, I. (1984): Temperature distributions around buried pipe networks in soil with a temperature dependent thermal conductivity. Int. Jnl. Heat and Mass Transfer, 27, 409–417.

    Article  Google Scholar 

  • De Vries, D.A. (1952): The thermal conductivity of soil. Mededelingen van de Landbouwhogeschool to Wageningen, 52 (1), 1–73.

    Google Scholar 

  • De Vries, D.A. (1958). Simultaneous transfer of heat and moisture in porous media. Trans. American Geohys. Union, 39 (5), 909–916.

    Article  Google Scholar 

  • De Vries, D. A. (1987). The theory of heat and moisture transfer in porous media revisited. Int. J. Heat Mass Transfer. 30 (7), 1343–1350.

    Article  Google Scholar 

  • Edlefsen, N.E., Anderson, A.B.C. (1943). Thermodynamics of soil moisture. Hilgardia, 15 (2), 31–298.

    Google Scholar 

  • Ewen, J. (1987). Combined heat and mass transfer in unsaturated sand surrounding a heated cylinder. Ph.D. thesis, University College, Cardiff.

    Google Scholar 

  • Ewen, J., Thomas, H.R. (1987). The thermal probe–a new method and its use on an unsaturated sand. Geotechnique, 37, 91–105.

    Article  Google Scholar 

  • Ewen, J., Thomas, H.R. (1989). Heating unsaturated medium sand. Geotechnique, 39 (3), 455–470.

    Article  Google Scholar 

  • Farouki, O. (1981). Thermal properties of soils. US Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, Monograph 81–1.

    Google Scholar 

  • Geraminegad, M., Saxena, S. (1985). A solution of coupled heat-moisture transfer in saturated-unsaturated media. Proc. of the fifth Conf on Numerical Methods in Geomechanics, Nagoya.

    Google Scholar 

  • Hartley, J.C., Black, W.Z. (1981). Transient simultaneous heat and mass transfer in moist, unsaturated soils. Jnl. of Heat Transfer, ASME, 103, 376–382.

    Article  Google Scholar 

  • Kaye, G.W.C., Laby, T.M. (1973). Tables of Physical and chemical constants. 14th Edn., Harlow: Longman.

    Google Scholar 

  • Krischer, O. (1963). Die wissenschaftlichen grundlagen der trocknungstechnik. Springer,Berlin.

    Google Scholar 

  • Krisher, O., Rohnalter, H. (1940). Warmeleitung and Dampfdiffusion in feuchten Gutern, Verein Deut. Ing-Forschungsheft. p. 402.

    Google Scholar 

  • Luikov, A.V. (1966). Heat and mass transfer in capillary porous bodies. Pergamon Press, Oxford, U.K.

    MATH  Google Scholar 

  • Lee G., Glascoe, N. M., Wright S. J. and L. M. Abriola (1999). Modeling the Influence of Heat/Moisture Exchange During Bioventing. J Environ Eng. ASCE, 125 (12), 1093–1103.

    Article  Google Scholar 

  • Lees, M. (1966). A linear three-level difference scheme for quasilinear parabolic equations. Mathematics of Computation, 20, 516–622.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, C.L.W. (1992): The use of transputers to simulate heat and mass transfer in soil, PhD Thesis, School of Engineering, University of Wales College of Cardiff.

    Google Scholar 

  • Mayhew, Y.R., Rogers, G.F.C. (1976). Thermodynamic and transport properties of fluids. 2nd edition, Oxford: Blackwell.

    Google Scholar 

  • Milly, P.C. (1982). Moisture and heat transport in hysteretic, inhomogenous porous media: A matric head-based formulation and a numerical model. Water Resour. Res., 18 (3), 489–498.

    Article  Google Scholar 

  • Penman, H. (1940). Gas and vapour movements in the soil. 1. The diffusion of vapours through porous solids. J. Agric. Sci., vol. 30, pp. 437–461.

    Article  Google Scholar 

  • Philip, J.R., de Vries, D.A. (1957). Moisture movement in porous materials under temperature gradients. Trans. American Geophysical Union, 38 (2), 222–232.

    Article  Google Scholar 

  • Pollock, D.W. (1986): Simulation of fluid flow and energy processes associated with high-level radioactive waste disposal in unsaturated alluvium, Water Resources Research, 22 (5), 765–775.

    Article  Google Scholar 

  • Preece (1975): The measurement and calculation of physical properties of cable bedding sands. Part 2: specific thermal capacity, thermal conductivity and temperature ratio across ‘air’ filled pores. CEGB Laboratory Note No. RD/L/N 231 /74.

    Google Scholar 

  • Preece, R.J., Blowers, R. M. (1979). A numerical method for evaluating coupled heat and moisture diffusion through porous media with varying physical properties. Proc. of 1st Int. Conf. on Num. Meth. in Thermal Problems, Swansea, 577–538.

    Google Scholar 

  • Raudkivi, A.J., Nguyen Van U. (1976). Soil moisture movement by temperature gradient. Jnl. of Geotech. Engrg., ASCE, 102, 1225–1244.

    Google Scholar 

  • Rees S. W., Zhou Z. and Thomas H. R. (2000) “The influence of soil moisture content variations on heat losses from earth-contact structures: An Initial Assessment” — Building and Environment, Vol. 36, Issue 2, p157–165.

    Google Scholar 

  • Reichardt, K., Libardi, P.L., Nielsen, D.R. (1975). Unsaturated hydraulic conductivity determination by a scaling technique. Soil Science, 120, 165–168.

    Article  Google Scholar 

  • Radhakrishna, H.S., Lau, K., Crawford, A.M. (1984). Coupled heat and moisture flow through soils. Jnl. of Geotech. Engrg., ASCE, 110, 1766–1784.

    Article  Google Scholar 

  • Roache, P.J. (1972). Computational fluid mechanics. Alberquerque, New Mexico: Hermosa Publishers.

    Google Scholar 

  • Shen, L.S. and Ramsey, J.W. (1988): An investigation of transient, two-dimensional coupled heat and moisture flow in the soil surrounding a basement wall. Int. Jnl. Heat and Mass Transfer, 31, 1517–1527.

    Article  Google Scholar 

  • Siegel, D.L., Davis, L.R. (1977). Transient heat and mass transfer in soils in the vicinity of heated porous pipes. ASME, Journal of Heat Transfer, 99 (4), 541–546.

    Article  Google Scholar 

  • Sophocleous, M. (1979). Analysis of water and heat flow in unsaturated-saturated porous media. Water Resour. Res., 15 (5), 1195–1206.

    Article  Google Scholar 

  • Taylor, S.A., Cary, J.W. (1964). Linear equations for the simultaneous flow of water and energy in a continuous soil system. Soil Sci. Amer. Proc., 28, 167–172.

    Article  Google Scholar 

  • Thomas, H.R. (1985). Modelling two-dimensional heat and moisture transfer in unsaturated soils, including gravity effects. Int. Jnl. Num. Anal. Meth. in Geomech.,9, 573–588.

    Google Scholar 

  • Thomas, H.R. (1987). Non-linear analysis of heat and moisture transfer in partly saturated soil, Jnl. Engrg. Mech. Div., ASCE, 113, 1163–1180.

    Article  Google Scholar 

  • Thomas, H.R., King, S.D. (1991). Coupled temperature/capillary potential variations in unsaturated soil. ASCE, J. Eng. Mech., 117 (11), 2475–2491.

    Article  Google Scholar 

  • Thomas, H.R., Li, C.L.W. (1989). A parallel computing solution of coupled flow processes in soil. ASCE, Jnl. Comp. in Civil Eng. 5(4), 428–443.

    Google Scholar 

  • Thomas, H.R., Sansom, M.R. (1995). Fully coupled analysis of heat, moisture and air transfer in unsaturated soil. ASCE, J. Eng. Mech., 12 (3), 392–405.

    Article  Google Scholar 

  • Thomas, H.R., He, Y. (1995). Analysis of coupled heat, moisture and air transfer in a de-formable unsaturated soil. Geotechnique, 45 (4), 677–689.

    Article  Google Scholar 

  • Thomas, H.R., He, Y., Sansom, M.R. and Li, CLW. (1996). On the Development of a Model of the thermo-mechanical-hydraulic Behaviour of Unsaturated Soils. Engineering Geology, 41, 197–218.

    Article  Google Scholar 

  • Thomas, H. R. and P. J. Cleall (1999) “Inclusion of expansive clay behaviour in coupled thermo hydraulic mechanical models.” Engineering Geology, Volume 54, Issues 1–2, September 1999, Pages 93–108

    Google Scholar 

  • Trew, A., Wilson, G. (1991). Past, present, parallel: A survey of available parallel computer systems. Springer-Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Wien

About this chapter

Cite this chapter

Thomas, H.R., Sansom, M., Rees, S.W. (2001). Non-Isothermal Flow. In: Schrefler, B.A. (eds) Environmental Geomechanics. International Centre for Mechanical Sciences, vol 417. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2592-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2592-2_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83680-4

  • Online ISBN: 978-3-7091-2592-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics