Introduction to High-Order Approximation Methods for Computational Fluid Dynamics

  • R. Peyret
Part of the International Centre for Mechanical Sciences book series (CISM, volume 395)


These lectures are devoted to a presentation and a discussion of high-order approximation methods currently used in Computational Fluid Dynamics. The first part considers the spatial approximation: Classical and Hermitian compact finite-difference, finite-volume and spectral methods. In particular, it is shown how approximation formulas can be derived from suitable interpolating polynomials. The second part is devoted to time-discretization methods: multistep methods (Adams-Bashforth and BDF) and one-step methods (Runge-Kutta). The construction and the stability of several high-order time-discretization schemes are addressed.


Computational Fluid Dynamics Truncation Error Multistep Method Spectral Element Method Nonuniform Mesh 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Babuska, I., Szabo, B.A. and Katz, I.N.: The p-version of the finite-element method, SIAM J. Numer. Anal., 18 (1981), 515–545.CrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    Babuska, I. and Suri, M.: The p-and h-p version of the finite element method, An overview, Comput. Methods Appl. Mech. Engrg, 80 (1990), 5–26.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    Patera, A.T.: A spectral element method for fluid dynamics: laminar flow in a channel expansion, J. Comput. Phys., 54 (1984), 468–488.ADSCrossRefzbMATHGoogle Scholar
  4. [4]
    Maday, Y. and Patera, A.T.: Spectral Element Methods for the Incompressible Na,vier-Stokes Equations, in: State of the Art Surveys in Computational Mechanics (Ed. A. Noor), ASME, 1987, 71–143.Google Scholar
  5. [5]
    Isaacson, E. and Keller, H.B.: Analysis of Numerical Methods, J. Wiley and Sons, New York, 1966.Google Scholar
  6. [6]
    Kreiss, H.O.: Difference approximations for boundary and eigenvalues problems for ordinary differential equations, Math. Comput., 26 (1972), 605–624.CrossRefzbMATHMathSciNetGoogle Scholar
  7. [7]
    Bramble, J.H. and Hubbard, R.E.: On the formulation of finite difference analogous of the Dirichlet problem for Poisson’s equation, Numer. Math., 4 (1962), 313–327.zbMATHMathSciNetGoogle Scholar
  8. [8]
    Pevret, R.. and Taylor, T.D.: Computational Methods for Fluid Flow, Springer-\%erlag, New York, 1983.Google Scholar
  9. [9]
    Collatz. L.: The Numerical Treatment of Differential Equations, Springer-Verlag, Berlin. 1966.Google Scholar
  10. [10]
    Rubin. S.G. and Khosla, P.K.: Turbulent boundary layers with and without mass injection, Computers and Fluids, 5 (1977), 241–259.Google Scholar
  11. [11]
    Hirsh, R.S.: Higher order accurate difference solutions of fluid mechanics problems by a compact differencing technique, J. Comput. Phys., 19 (1975), 90–109.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  12. [12]
    Adam. Y.: A Hermitian finite-difference method for the solution of parabolic equations. Comp. and Maths with Applies.. 1 (1975), 393–406.Google Scholar
  13. [13]
    Pevret, R.: Crie méthode de différences finies de haute précision pour la résolution des équations de Navier-Stokes stationnaires, C.R. Acad. Sciences, Paris, Série A, 286 (1978). 59–62.ADSGoogle Scholar
  14. [14]
    Peyret, R.: A Hermitian finite-difference method for the solution of the NavierStokes equations, Proc. 1st Inter. Conf. on Numerical Methods in Laminar and Turbulent Flow, Swansea, July, 1978, (Eds. C. Taylor, K. Morgan and C. Brebbia ), Pentech Press, London 1978, 45–54.Google Scholar
  15. [15]
    Krause, E., Hirschel, E.H. and Kordulla, W.: Fourth-order “Mehrstellen” integration for three-dimensional turbulent boundary layers, Computers and Fluids, 7 (1976), 77–92.ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    Ciment, M., Leventhal, S.H. and Weinberg, B.C.: The Operator Compact Implicit method for parabolic equations, J. Comput. Phys., 28 (1978), 135–166.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  17. [17]
    Bade, F. and Haldenwang, P.: High order scheme for thermally driven flows in an open channel, Computers and Fluids, 27 (1998), 273–290.CrossRefzbMATHGoogle Scholar
  18. [18]
    Lele, S.K.: Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103 (1992), 16–42.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  19. [19]
    Elsaesser, E. and Peyret, R.: Hermitian Methods for the Solution of the NavierStokes Equations in Primitive Variables, in: Recent Advances in Numerical Methods in Fluids, vol. 3, (Ed. W.G. Habashi ), Pineridge Press, Swansea 1984, 137–171.Google Scholar
  20. [20]
    Adam, Y.: Highly accurate compact implicit methods and boundary conditions, J. Comput. Phys., 24 (1977), 10–22. -Google Scholar
  21. [21]
    Zang, T.A.: Spectral methods for simulations of transition and turbulence, Comput. Methods Appl. Mech. Engrg., 80 (1990), 209–221.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  22. [22]
    Haras, Z. and Ta’asan, S.: Finite difference schemes for long-time integration, J. Comput. Phys., 114 (1994), 265–279.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  23. [23]
    Ferziger, J.H.: Numerical Methods for Engineering Application, J. Wiley and Sons, New York, 1981.Google Scholar
  24. [24]
    Peyret, R.: High-order and Spectral Methods for the Navier-Stokes Equations, in: Proc. Sixth Inter. Symp. on Computational Fluid Dynamics, Lake Tahoe, NV, Sept.8–15, 1995, 940–945.Google Scholar
  25. [25]
    Meri, A., Wengle, H., Dejoan, A., Védy, E. and Schiestel, R.: Applications of a 4th-order Hermitian scheme for non-equidistant grids to LES and DNS of incompressible fluid flow, in: Numerical Flow Simulation I (Ed. H. Hirschel ), Vieweg, Braunschweig 1998, 382–406.CrossRefGoogle Scholar
  26. [26]
    Botella, O.: Résolution numérique de problèmes de Navier-Stokes singuliers par une méthode de projection Tchebychev, These, Doctorat en Sciences, Université de Nice-Sophia Antipolis, 1998.Google Scholar
  27. [27]
    MacCormack, R.W. and Paullay, A.J.: Computational efficiency achieved by time splitting of finite difference operators, AIAA Paper No. 72–154, 1972.Google Scholar
  28. [28]
    Gosrnan, A.D., Pun, W.M., Runchal, A.K., Spalding, D.B. and Wolfshtein, M.: Heat and Mass Transfer in Recirculating Flows, Academic Press, London, 1969.Google Scholar
  29. [29]
    Hirsch, C.: Numerical Computation of Internal and External Flows, J. Wiley and Sons, Chichester, 1988. -Google Scholar
  30. [30]
    Fletcher, C.A.J.: Computational Techniques for Fluid Dynamics, Springer-Verlag, Berlin, 1988.CrossRefzbMATHGoogle Scholar
  31. [31]
    Grasso, F. and Meola, C.: Euler and Navier-Stokes Equations for Compressible Flows: Finite-Volume Methods, in: Handbook of Computational Fluid Mechanics. (Ed. R,. Peyret), Academic Press, London, 1996, 159–282.Google Scholar
  32. [32]
    Désidéri, J.A. and Dervieux, A.: Compressible Flow Solvers using Unstructured Grids, Von Karman Institute Lecture Series 1988–5, Rhode-St-Genèse, Belgium, 1988.Google Scholar
  33. [33]
    Barth, T.J.: Aspects of Unstructured Grids arid Finite-Volume Solvers for the Euler and Navier-Stokes Equations, Von Karman Institute Lecture Series 199405, Rhode-St-Genèse, Belgium, 1994.Google Scholar
  34. [34]
    Hu. C. and Shin, C.-W.: High Order Weighted ENO Schemes for Unstructured Meshes: Preliminary Results, in: Computational Fluid Dynarnics’98 (Eds K.D. Papaillomr et al.). 1. Wiley Sons, Chichester, 1998, 356–362.Google Scholar
  35. [35]
    Désidéri, J.A.: Modèles Discrets et’ Schémas Itératifs: Application aux Algorithmes Multigrilles et Multidomaines, Hermès, Paris, 1998.zbMATHGoogle Scholar
  36. [36]
    Evmard. R.. Gallouët: Finite Volume Methods, to appear in: Handbook of Numerical Analysis (Eds. P.G. Ciarlet and J.L. Lions ), Elsevier, 1999.Google Scholar
  37. [37]
    Harten. A.. Engquist, B.. Ostler. S. and Chakravarthy, S.: Uniformly high order essentially non-oscillatory schemes, III, J. Comput. Phys., 71 (1987), 231–303.Google Scholar
  38. [38]
    Shu. C.-W.: Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation laws.. ICASE Report No.97–65, 1997, to appear in Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, (Ed. A. Quarteroni). Lecture Notes in Mathematics. CIME Series, Springer-Verlag.Google Scholar
  39. [39]
    Abgrall. R..: On essentially non-oscillatory schemes on unstructured meshes: Analysis and implementation. J. Comput. Phvs.. 114 (1994), 45–58.Google Scholar
  40. [40]
    Barth, T.J. and Frederickson, P.O.: Higher order solution of the Euler Equations on Unstructured Grids Using Quadratic Reconstruction, AIAA paper 90–0013, 28th Aerospace Science Meeting, Reno, NV, 1990.Google Scholar
  41. [41]
    Van Leer, B.: Towards the ultimate conservative scheme, V. A second-order sequel to Godunov’s method, J. Comput. Phys., 32 (1979), 101–136.Google Scholar
  42. [42]
    Godlewski, E. and Raviart, P.A.: Numerical Approximation of Hyperbolic Systems of Conservation Laws, Springer-Verlag, 1996.Google Scholar
  43. [43]
    Ciarlet, P.G. and Raviart, P.A.: General Lagrange and Hermite interpolation in with applications to finite element methods, Arch. Rational Mech. Anal., 46 (1972), 177–199.zbMATHMathSciNetGoogle Scholar
  44. [44]
    Liu, X.-D., Osher, S. and Chan, T.: Weighted essentially nonoscillatory schemes, J. Comput. Phys., 115 (1994), 200–212.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  45. [45]
    Barth, T.J.: Recent Developments in High Order k-exact Reconstruction on Unstructured Meshes, AIAA paper 93–0668, 31st Aerospace Science Meeting Exhibit, Reno, NV, 1993.Google Scholar
  46. [46]
    Gottlieb, D. and Orszag, S.A.: Numerical Analysis of Spectral Methods: Theory and Applications, SIAM, Philadelphia, 1977.Google Scholar
  47. [47]
    Canuto, C., Hussaini, M.Y., Quarteroni, A. and Zang, T.A.: Spectral Methods in Fluid Dynamics, Springer-Verlag, New York, 1988.CrossRefzbMATHGoogle Scholar
  48. [48]
    Boyd, J.P.: Chebyshev and Fourier Spectral Methods, Springer-Verlag, Berlin, 1989.CrossRefGoogle Scholar
  49. [49]
    Funaro, D.: Polynomial Approximation of Differential Equations, Springer-Verlag, Berlin, 1992.zbMATHGoogle Scholar
  50. [50]
    Bernardi, C. and Maday, Y.: Approximations Spectrales de Problèmes aux Limites Elliptiques, Springer-Verlag, Paris 1992.zbMATHGoogle Scholar
  51. [51]
    Lanczos, C.: Applied Analysis, Prentice-Hall, Englewood Cliffs, 1956.Google Scholar
  52. [52]
    Gottlieb, D., Hussaini, M.Y. and Orszag, S.A.: Theory and Applications of Spectral Methods, in: Spectral Methods for Partial Differential Equations (Eds, R.G. Voigt, D. Gottlieb and M.Y. Hussaini ), SIAM, Philadelphia, 1984, 1–54.Google Scholar
  53. [53]
    Bayliss, A., Class, A. and Matkowsky, B.J.: Roundoff error in computing derivatives using the Chebyshev differentiation matrix, J. Comput. Phys., 116 (1994), 380–383.ADSCrossRefMathSciNetGoogle Scholar
  54. [54]
    Sabbah, C.: Thèse de Doctorat, Université de Nice-Sophia Antipolis, à paraître, 1999.Google Scholar
  55. [55]
    Henrici, P.: Discrete Variable Methods for Ordinary Differential Equations, J. Wiley and Sons, New York, 1962.Google Scholar
  56. [56]
    Gear, C.W.: Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall Inc., Englewood Cliffs, 1971.zbMATHGoogle Scholar
  57. [57]
    Lambert, J.D.: Computational Methods in Ordinary Differential Equations, J. Wiley and Sons, New York, 1973.Google Scholar
  58. [58]
    Lapidus, L. and Seinfeld,.T.H.: Numerical Solution of Ordinary Differential Equations, Academic Press, New York, 1971.Google Scholar
  59. [59]
    Hairer, E., Norsett, S.P. and Wanner, G.: Solving Ordinary Differential Equations I. Nonstiff Problems, Springer-Verlag, Berlin, 1987.CrossRefzbMATHGoogle Scholar
  60. [60]
    Hairer, E. and Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, Springer-Verlag, Berlin, 1991.CrossRefzbMATHGoogle Scholar
  61. [61]
    Ouazzani, J., Peyret, R. and Zakaria, A.: Stability of Collocation-Chebyshev Schemes with Application to the Navier-Stokes Equations, in: Proc. Sixth GAMM Conf. on Numerical Methods in Fluid Mechanics, (Eds. D. Rues and W. Kordulla ), V’ieweg, Braunschweig 1986, 287–294.Google Scholar
  62. [62]
    Vanel, J.M.. Peyret, R. and Bontoux, P.: A Pseudo-Spectral Solution of VorticityStreani Function Equations Using the Influence Matrix Technique, in: Numerical Methods for Fluid Dynamics II, (Eds. K.W. Morton and M.J. Baines ), Clarendon Press, Oxford, 1986, 463–475.Google Scholar
  63. [63]
    Ehrenstein, U. and Peyret, R,.: A Chebyshev collocation method for the NavierStokes equations with application to double-diffusive convection, Int. J. Numerical Methods in Fluids, 9 (1989), 427–452.Google Scholar
  64. [64]
    Crouzeix. M.: Une méthode multipas implicite-explicite pour l’approximation des (’quations d’évolution paraboliques. Numer. Math., 35 (1980), 257–276.Google Scholar
  65. [65]
    Baker. G.A.. Dougalis. V.A. and Karakashia, O.A.: On a higher order accurate fully discrete Galerkin approximation to the Navier-Stokes equations, Math. Comput.. 39 (1982), 339–375.Google Scholar
  66. [66]
    Le Ore. P.: Transition to unsteady natural convection in a tall water-filled cavity. Phys. Fluids A. 2 (1990), 503–515.Google Scholar
  67. [67]
    Botella, O.: On the solution of the Navier-Stokes equations using projection schemes with third-order accuracy in time, Computers and Fluids, 26 (1997), 107–116.CrossRefzbMATHGoogle Scholar
  68. [68]
    Botella, O. and Peyret, R.: The Chebyshev Approximation for the Solution of Singular Navier-Stokes Problems, in: Numerical Modelling in Continuum Mechanics, 3rd Summer Conf., Prague, 8–11 Sept. 1997, (Eds. M. Feistauer, R. Rannacher and K. Kozel ), 81–90.Google Scholar
  69. [69]
    Karniadakis, G.E., Israeli, M. and Orszag, S.A.: High-order splitting methods for the incompressible Navier-Stokes equations, J. Comput. Phys., 97 (1991), 414–443.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  70. [70]
    Williamson, J.H.: Low-storage Runge-Kutta schemes, J. Comput. Phys., 35 (1980), 48–56.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  71. [71]
    Shu, C.-W. and Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77 (1988), 439–471.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  72. [72]
    Gottlieb, D. and Shu, C.-W.: Total variation diminishing Runge-Kutta schemes, Math. Comput., to appear, 1998.Google Scholar
  73. [73]
    Carpenter, M.H. and Kennedy, C.A.: A fourth-order 2N-storage Runge-Kutta scheme, NASA TM 109112, 1994.Google Scholar
  74. [74]
    Carpenter, M.H., Gottlieb, D., Abarbanel, S. and Don, W.-S.: The theoretical accuracy of Runge-Kutta time discretizations for the initial boundary value problem: A study of the boundary error, SIAM J. Sei. Comput., 16 (1995), 1241–1252.zbMATHMathSciNetGoogle Scholar
  75. [75]
    Fyfe, D.J.: Economical evaluation of Runge-Kutta Formulae, Math. Comput., 20 (1996), 392–398.CrossRefMathSciNetGoogle Scholar
  76. [76]
    Guillard, H., Malé, J.-M. and Peyret, R.: Adaptative spectral methods with application to mixing layer computations, J. Comput. Phys., 102 (1992), 114–126.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  77. [77]
    Blum, E.K.: A modification of the Runge-Kutta fourth-order method, Math. Comput., 16 (1962), 176–187.CrossRefzbMATHGoogle Scholar
  78. [78]
    Erlebacher, G., Hussaini, M.Y. and Shu, C.-W.: Interaction of the shock with a longitudinal vortex, J. Fluid Mech., 337 (1997), 129–154.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  79. [79]
    Wilson, R..V., Demuren, A.O. and Carpenter, M.: Higher-order compact schemes for numerical simulation of incompressible flows, ICASE report No. 98–13, 1998.Google Scholar
  80. [80]
    Zang, T.A. and Hussaini, M.Y.: Numerical experiments on subcritical transition mechanisms, AIAA paper 85–0296, 1985.Google Scholar
  81. [81]
    Gauthier, S.: A semi-implicit collocation method: Application to thermal convection in 2D compressible fluids, Int. J. Numer. Methods in Fluids, 12 (1991), 985–1002.ADSCrossRefzbMATHGoogle Scholar
  82. [82]
    Renaud, F.: Méthode Spectrale de Décomposition Dynamique de Domaines: Application aux Ecoulements Compressibles de Rayleigh-Bénard et de Kelvin-Helmholtz, Thèse de Doctorat, Université de Nice-Sophia Antipolis, 1996.Google Scholar
  83. [83]
    Gauthier, S., Guillard, H., Lumpp, T., Male, J.-M., Peyret, R. and Renaud, F.: A Spectral Domain Decomposition Method with Moving Interfaces for Viscous Compressible Flows, in: Computational Fluid Dynamics’96 (Eds. J.A. Désidéri et all.). 1. Wiley and Sons, Chichester, 1996, 839–844.Google Scholar
  84. [84]
    Rosenbrock, H.H.: Some general implicit processes for the numerical solution of differential equations, Computer J., 5 (1963), 329–330.CrossRefzbMATHMathSciNetGoogle Scholar
  85. [85]
    Miller, J.J.H.: On the location of zeros of certain class of polynomials with application to numerical analysis, J. Inst. Math. Applcs, 8 (1971), 379–406.ADSGoogle Scholar
  86. [86]
    Dalilquist, G.: A special stability problem for linear multistep methods, BIT, 3 (1963), 27–43.Google Scholar
  87. [87]
    Vidlund, O.B.: A note on unconditionally stable linear multistep methods, BIT, 7 (1967), 65–70.Google Scholar

Copyright information

© Springer-Verlag Wien 2000

Authors and Affiliations

  • R. Peyret
    • 1
    • 2
  1. 1.CNRSNice-Sophia Antipolis UniversityNiceFrance
  2. 2.INRIASophia AntipolisNiceFrance

Personalised recommendations