Advertisement

Tensegrity Systems

  • René Motro
  • Nicolas Vassart
Part of the International Centre for Mechanical Sciences book series (CISM, volume 412)

Abstract

During an exhibition devoted to construction, held in Moscow in 1921, Johanssen presented a sculpture made with three struts and eight cables. This system had no rigidity, and its mechanisms could be activated with one of the cables. It was a kind of “ proto-form ”. In 1948, Kenneth Snelson worked with Richard Buckminster Fuller, in Black Mountain College. Fuller wanted to realize his idea of “ islands of compression inside a sea of tension ”. In response, Snelson made three models (see Motro, 1996).

Keywords

Force Density Relative Rotation Connectivity Matrix Connexion Matrix Free Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belkacem, S., (1987). Recherche de forme par relaxation dynamique de systèmes réticulés spatiaux autocontraints. Thèse Docteur Ingénieur, Université Paul Sabatier. Toulouse, France.Google Scholar
  2. Lalvani H., Emmerich D.G., Sadao S. and Snelson K. (1996). Origins of tensegrity. Views of Emmerich, Fuller and Snelson and Responses. In International Journal of Space Structures, Special Issue « Morphology », Lalvani H guest editor, Vol. 11, N° 1 & 2, 27–57.Google Scholar
  3. Linkwitz, K., Sheck, H.J., (1974) The force density method for formfinding and computation of networks. Computer Methods in applied Mechanics and Engineering 3. 115–134.CrossRefMathSciNetGoogle Scholar
  4. Motro, R., (1994). Formes et forces dans les systèmes constructifs - Cas des systèmes réticulés spatiaux autocontraints. Thèse d’Etat, Université des Sciences et Techniques du Languedoc, Montpellier, France.Google Scholar
  5. Motro R, (1996). Structural morphology of tensegrity systems. In International Journal of Space Structures, Special Issue « Morphology », Lalvani H guest editor, Vol. 11, N° 1 & 2, 233–240.Google Scholar
  6. Raducanu V. (1997). Conception d’un noeud industriel pour les grilles de tenségrité, Diplöme d’Etudes Approfondies, Université de Montpellier II, France, 14–17.Google Scholar
  7. Vassart N, (1997). Recherche de forme et stabilité des systèmes réticulés spatiaux autocontraints: Applications aux systèmes de tenségrité. Thèse de doctorat, Montpellier, France.Google Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • René Motro
    • 1
  • Nicolas Vassart
    • 1
  1. 1.Laboratoire de Mécanique et Génie CivilUniversité de MontpellierFrance

Personalised recommendations