Skip to main content

Morphological Equilibrium and Kinetics of Two-Phase Materials

  • Chapter
Configurational Mechanics of Materials

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 427))

  • 260 Accesses

Abstract

Many engineering and natural crystalline materials are microscopically not homogeneous but consist of two ore more phases with different material properties. The morphology, i.e. the geometric shape of the phases, can be regarded as a result of stresses and strains induced by their different crystalline structure and by the loading history. On account of diffusive mass transport, the morphology may change with time and eventually tend to a final equilibrium state.. It is self-evident that in such multiphase materials the overall properties are found to depend not only on the properties of each phase, but also on the morphology of the microstructure and its evolution. As an example, Fig. la shows the lens-shaped microstructure of Mg-stabilized Zirconia (ZrO2) formed by a tetragonal in a cubic phase. Similarly, a lamellar structure is found in a geomaterial consisting of a pigeonite in an augite phase, see Fig. lb. In high temperature applications, such as turbine blades, Ni-base alloys are becoming more widely used. Microscopically they consist of Ni3X precipitates, the so-called γ′-phase (where X stands for Al, Ti, Si etc.), embedded in a Ni matrix, the γ-phase. In Fig. 2 the microstructure of such materials is displayed for different heat treatment and loading histories. It can be seen that, depending on the specific parameters, the precipitates may be sphere or cube shaped, they may be oblate or prolate. Furthermore they align along the crystallographic axis and show the so-called rafting behaviour under elevated temperature and external loads. The binary system Ni — Ni3Al has been under careful investigation for several years. Materials science has described the material properties very thoroughly. It was observed that the microstructure of those materials is of great importance for their overall properties, see e.g. Hornbogen and Roth (1967), Ardell and Nicholson (1966), Ardell and Meshkinpour (1994). It is characteristic not only for Ni-base alloys that the crystallographic planes of the two phases are continuous. Such phase boundaries are called coherent. Beside these empirical aspects, progress has been made in understanding the mechanics and thermodynamics of two-phase materials, e.g. Leo and Sekerka (1989), Gurtin and Voorhees (1993), Gurtin (1995), Schmidt and Gross (1997). Herein the configurational forces play a central role. These more theoretical works lay the basis for understanding how the microstructures form and how different loading situations influence the morphology on the micro level. However, pure analytical investigations can only treat very simple phenomena or predict qualitative results, see Johnson and Cahn (1984), Kaganova and Roitburd (1988). Numerical investigation, on the other hand, are capable of overcoming these limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ardell, A., and Maheshwari, A. (1992). Anomalous coarsening behaviour of small volume fractions of Ni3A1 precipitates in binary Ni-Al alloys. Acta metall. mater. 40 (10): 2661–2667.

    Article  Google Scholar 

  • Ardell, A., and Meshkinpour, M. (1994). Role of volume fraction in the coarsening of Ni3Si precipitates in binary Ni-Si alloys. Material Science and Engineering A 185: 153–163.

    Google Scholar 

  • Ardell, A., and Nicholson, R. (1966). On the modulated structure of aged Ni-Al alloys. Acta metall. 14: 1205–1309.

    Google Scholar 

  • Ardell, A., and Rastogi, P. (1971). The coarsening behaviour of the ry’ precipitate in Nickel-Silicon alloys. Acta metall. 19: 321–330.

    Article  Google Scholar 

  • Binder, K., ed. (1986). Monte Carlo methods in statistical physics. Berlin, Heidelberg, New York, Barcelona, Hong Kong, London, Milan, Paris, Singapore, Tokyo: Springer.

    MATH  Google Scholar 

  • Binder, K., ed. (1987). Applications of the Monte Carlo method in statistical physics. Berlin, Heidelberg, New York, Barcelona, Hong Kong, London, Milan, Paris, Singapore, Tokyo: Springer.

    Google Scholar 

  • Brebbia, C., and Telles, J. (1985). Boundary Element Techniques. Springer Verlag.

    Google Scholar 

  • Eshelby, J. (1957). The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. R. Soc. Lond. A241: 376–396.

    Article  MathSciNet  MATH  Google Scholar 

  • Eshelby, J. (1970). Energy relations and the energy-momentum tensor in continuum mechanics, In Kanninen (1970). 77–115.

    Google Scholar 

  • Fried, E., and Gurtin, M. (1993). Continnum theory of thermally induced phase transitions based on an order parameter. Physica D 68: 326–343.

    Article  MathSciNet  MATH  Google Scholar 

  • Göken, M., and Kempf, M. (1999). Microstructural properties of superalloys investigated by nanoindentations in an atomic force microscope..Acta Mater. (47):1043–1052.

    Google Scholar 

  • Gurtin, M., and Voorhees, P. (1993). The continuum mechanics of coherent two-phase elastic solids with mass transport. Proc. R. Soc. Lond. A 440: 323–343.

    Article  MathSciNet  MATH  Google Scholar 

  • Gurtin, M. (1995). The nature of configurational forces. Arch. Rational Mech. Anal. 131: 67–100.

    Article  MathSciNet  MATH  Google Scholar 

  • Hoover, W. G., Ashurst, W. T., and Olness, R. J. (1974). Two-dimensional computer studies of crystal stability and fluid viscosity. J. Chem. Phys. 60 (10): 4043–4047.

    Article  Google Scholar 

  • Hornbogen, E., and Roth, M. (1967). Die Verteilung hohärenter Teilchen in Nickellegierungen. Z Metallkde 58: 842–855.

    Google Scholar 

  • Johnson, W., and Cahn, J. (1984). Elastically induced shape bifurcations of inclusions. Acta metal!. 32 (11): 1925–1933.

    Article  Google Scholar 

  • Johnson, W., Berkenpas, M., and Laughlin, D. (1988). Precipitate shape transitions during coarsening under uniaxial stress. Acta metall. 36 (2): 3149–3162.

    Article  Google Scholar 

  • Kaganova, I., and Roitburd, R. (1988). Equilibrium between elastically-interacting phases. Soy. Phys. JETP 67 (4): 1173–1183.

    Google Scholar 

  • Kanninen, M., ed. (1970). Inelastic Behaviour of Solids. New York: McGraw Hill.

    Google Scholar 

  • Kolling, S., and Gross, D. (2000). Description of two-phase materials using discrete atom method. ZAMM 80: S385 - S386.

    Article  MATH  Google Scholar 

  • Kolling, S., and Gross, D. (accepted for publication in 2001 ). Simulation of microstructural evolution in materials with misfitting precipitates. Journal of Probabilistic Engineering Mechanics.

    Google Scholar 

  • Lee, J.K. (1995). Coherency strain analysis via discrete atom method. Scr. Met. Mat. 32 (4): 559–564.

    Article  Google Scholar 

  • Lee, J.K. (1996a). Effects of applied stress on coherent precipitates via a disctrete atom method. Metals and Materials 2 (3): 183–193.

    Google Scholar 

  • Lee, J.K. (1996b). A study on coherency strain precipitate morphology via a discrete atom method. Met. Mat. Trans. 27A: 1449–1459.

    Article  Google Scholar 

  • Leo, P., and Sekerka, R. (1989). The effect of surface stress on crystal-melt and crystal-crystal equilibrium. Acta metall. 37 (12): 3119–3138.

    Article  Google Scholar 

  • Leo, P., Lowengrub, J., and Jou, H. (1998). A diffuse interface model for microstructural evolution in elastically stressed solids. Acta mater. 46 (6): 2113–2130.

    Article  Google Scholar 

  • Lubliner, J. (1990). Plasticity Theory. New York: Macmillan Publishing Company.

    MATH  Google Scholar 

  • Luenberger, D. (1984). Linear and nonlinear programming. Addison-Wesley, 2 edition.

    Google Scholar 

  • Mueller, R., and Gross, D. (1998a). 3D equilibrium shapes in two-phase materials. ZAMM 78(2):635–636.

    Google Scholar 

  • Mueller, R., and Gross, D. (1998b). 3D simulation of equilibrium morphologies of precipitates. Comp. Mat. Sci. 11: 35–44.

    Google Scholar 

  • Mura, T. (1987). Micromechanics of Defects in Solids. Martinus Nijhoff Publishers.

    Google Scholar 

  • Nemat-Nasser, S., and Hori, M. (1993). Micromechanics: Overall properties of heterogeneous materials. Amsterdam, London, New York, Tokyo: North Holland.

    Google Scholar 

  • Schclar, N. (1994). Anisotropic Analysis using Boundary Elements, volume 20 of Topics in Engineering. Southampton UK and Boston USA: Computational Mechanics Publications.

    MATH  Google Scholar 

  • Schmidt, I., and Gross, D. (1995). A strategy for determinig the equilibrium shape of an inclusion. Arch. Mech. 47 (2): 379–390.

    MATH  Google Scholar 

  • Schmidt, I., and Gross, D. (1997). The equilibrium shape of an elastically inhomogeneous particle. J. Mech. Phys. Solids 45 (9): 1521–1549.

    Article  MathSciNet  MATH  Google Scholar 

  • Schmidt, I., and Gross, D. (1999). Directional coarsening in Ni-base superalloys: analytical results for an elasticity based model. Proc. R. Soc. Lond. 455: 3085–3106.

    Article  Google Scholar 

  • Schmidt, I., Mueller, R., and Gross, D. (1998). The effect of elastic inhomogeneity on equilibrium and stability of a two particle morphology. Mechanics of Materials 30: 181–196.

    Article  Google Scholar 

  • Schmidt, I. (1997). Gleichgewichtsmorphologien elastischer Einschlüsse. Ph.D. Dissertation, Technische Hochschule Darmstadt, D-64289 Darmstadt.

    Google Scholar 

  • Su, C., and Voorhees, P. (1996). The dynamics of precipitate evolution in elastically stressed solids–I, inverse coarsening. Acta mater. 44 (5): 1987–1999.

    Article  Google Scholar 

  • Thompson, M., Su, C., and Voorhees, P. (1993). The equilibrium shape of a misfitting precipitate. Acta metall. mater. 42 (6): 2107–2122.

    Article  Google Scholar 

  • Voorhees, P., McFadden, G., and Johnson, W. (1992). On the morphological development of second-phase particles in elastically-stressed solids. Acta metall. mater. 40 (11): 2979–2992.

    Article  Google Scholar 

  • Schoenlein, L.H., Rühle, M., and Heuer, A.H. (1984). In Situ Straining Experoments of Mg-PSZ Single Crystals Adv. in Ceramics 12, Science and Technology of Zirkonia II, Eds: Claussen, N., Rühle, M. and Heuer, A.H., The American Ceramic Society: 275–282.

    Google Scholar 

  • Ruble, M., and Heuer, A.H. (1984). Phase Transformations in ZrO2-Containing Ceramivs: II The Martensitic Reaction in t-ZrO2 Adv. in Ceramics 12, Science and Technology of Zirkonia II, Eds: Claussen, N., Rühle, M. and Heuer, A.H., The American Ceramic Society: 1–32.

    Google Scholar 

  • Wahi, R.P. (1997). Nickel base superalloys: Deformation characteristics at elevated temperatures Adv. in Comp. Eng. Sci., Tech. Sci. Press, Eds. Atluri, S.N, Yagawa, G.:85–90

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Wien

About this chapter

Cite this chapter

Gross, D. (2001). Morphological Equilibrium and Kinetics of Two-Phase Materials. In: Kienzler, R., Maugin, G.A. (eds) Configurational Mechanics of Materials. International Centre for Mechanical Sciences, vol 427. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2576-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2576-2_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83338-4

  • Online ISBN: 978-3-7091-2576-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics