Engineering Turbulence Models and their Development, with Emphasis on Explicit Algebraic Reynolds Stress Models

Part of the International Centre for Mechanical Sciences book series (CISM, volume 442)


Single-point turbulence models will be discussed from a somewhat analytical point of view. The lowest level of modelling considered here is that of eddy-viscosity-based two-equation models, but particular attention is given to explicit algebraic Reynolds stress models (and explicit algebraic scalar flux models). Some new trends in models based directly on the Reynolds stress transport equations are also discussed.


Reynolds Stress Reynolds Stress Model Reynolds Stress Tensor Dissipation Ratio Large Strain Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adumitroaie, V., Taulbee, D.B. & Givi, P. (1997). Explicit algebraic scalar flux models for turbulent reacting flows. A. 43: 1935–2147.CrossRefGoogle Scholar
  2. Alvelius, K. & Johansson, A.V. (1999). Direct numerical simulation of rotating channel flow at various Reynolds numbers and rotation numbers. In PhD thesis of K. Alvelius, Dept. of Mechanics, KTH, Stockholm, SwedenGoogle Scholar
  3. Aupoix, B., Cousteix, J. & Liandrat, J. (1989). MIS: A way to derive the dissipation equation Turbulent Shear Flow vol. 6 (ed. J.-C. André ), SpringerGoogle Scholar
  4. Batchelor, G.K. (1953). The theory of homogeneous turbulence. Cambridge University Press.Google Scholar
  5. Champagne, F.H., Harris, V.G. & Corrsin, S. (1970). Experiments on nearly homogeneous turbulent shear flow. J. Fluid Mech. 41: 81–139.CrossRefADSGoogle Scholar
  6. Chasnov, J.R. (1994). Similarity states of passive scalar transport in isotropic turbulence. Phys. Fluids 6: 1036.CrossRefzbMATHADSGoogle Scholar
  7. Chou, P.Y. (1945). On velocity correlations and the solutions of the equations of turbulent motion. Quart. of Applied Math. 3: 38–54.zbMATHGoogle Scholar
  8. Comte-Bellot, G. & Corrsin, S. (1966). The use of a contraction to improve the isotropy of grid-generated turbulence. J. Fluid Mech. 25: 657–682.CrossRefADSGoogle Scholar
  9. Daly, B.J. & Harlow, F.H. (1970). Transport equations in turbulence. Phys. Fluids 13:2634–2649.CrossRefADSGoogle Scholar
  10. Durbin, P.A. (1996). On the k–e stagnation point anomaly. Int. J. Heat and Fluid Flow 17: 89–90.CrossRefGoogle Scholar
  11. Gatski, T.B. & Speziale, C.G. (1993). On explicit algebraic Reynolds stress models for complex turbulent flows. J. Fluid Mech. 254: 59–78.MathSciNetCrossRefzbMATHADSGoogle Scholar
  12. Gibson, M.M. & Launder, B.E. (1978). Ground effects on pressure fluctuations in the atmospheric boundary layer. J. Fluid Mech. 86: 491–511.CrossRefzbMATHADSGoogle Scholar
  13. Girimaji, S.S. (1995). Fully-explicit and self-consistent algebraic Reynolds stress model. ICASE Report No. 95–82.Google Scholar
  14. Girimaji, S.S. (1996). Improved algebraic Reynolds stress model for engineering flows. In Engineering Turbulence Modelling and Experiments 3 pp 121–129. Eds W. Rodi and G. Bergeles. Elsevier. Science B. V.Google Scholar
  15. Girimaji, S.S. (1997). A Galilean invariant explicit Reynolds stress model for turbulent curved flows. Phys. Fluids 9: 1067–1077.MathSciNetCrossRefzbMATHADSGoogle Scholar
  16. Girimaji, S.S. & Balachandar, S. (1997). Analysis and modeling of buoyancy-generated turbulence using numerical data. Int. J. Heat and Mass Transfer 41: 915–929.CrossRefGoogle Scholar
  17. Hallbäck, M., Groth, J. & Johansson, A.V. (1990). An algebraic model for nonisotropic turbulent dissipation rate in Reynolds stress closures. Phys Fluids A 2: 1859–1866.CrossRefzbMATHADSGoogle Scholar
  18. Högström, C.M., Wallin, S. & Johansson, A.V. (2001). Passive scalar flux modelling for CFD. In Proceedings of Turbulence and Shear Flow Phenomena II, Stockholm, June 27–29, 2001, II: 383–388.Google Scholar
  19. Imao, S., Itoh, M. & Harada, T. (1996). Turbulent characteristics of the flow in an axially rotating pipe. Int. J. Heat and Fluid Flow 17: 444–451.CrossRefGoogle Scholar
  20. Johansson, A.V. & Burden, A.D. (1999). An introduction to turbulence modelling. Chapter 4 in Transition, Turbulence and Combustion Modelling, ERCOFTAC Series vol. 6, Kluwer. pp 159–242.Google Scholar
  21. Johansson, A.V. & Hallbäck, M. (1994). Modelling of rapid pressure-strain rate in Reynolds tress closures. J. Fluid Mech. 269: 143–168CrossRefzbMATHADSGoogle Scholar
  22. Johansson, A.V. & Hallbäck, M. (1994). Modelling of rapid pressure-strain rate in Reynolds tress closures. J. Fluid Mech. 290: 405 (1995).Google Scholar
  23. Johansson, A.V. & Wallin, S. (1996). A new explicit algebraic Reynolds stress model. In Proc. Sixth European Turbulence Conference, Lausanne, July 1996, Ed. P. Monkewitz, 31–34.Google Scholar
  24. Johansson, A.V. & Wikström, P.M. (2000). DNS and modelling of passive scalar transport in turbulent channel flow with a focus on scalar dissipation rate modelling. Flow, Turbulence and Combustion 63: 223–245.CrossRefzbMATHGoogle Scholar
  25. Jongen, T., Mompean, G. & Gatski, T.G. (1998). Accounting for Reynolds stress and dissipation rate anisotropies in inertial and noninertial frames. Phys. Fluids 10: 674–684.CrossRefADSGoogle Scholar
  26. Kim, J. (1989). Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177: 133–166.CrossRefADSGoogle Scholar
  27. Kim, J., Moin, P. & Moser, R. (1987). On the structure of pressure fluctuations in simulated turbulent channel flow. J. Fluid Mech. 205: 421–451.CrossRefGoogle Scholar
  28. Kolmogorov, A.N. (1942). Equations of turbulent motion of an incompressible fluid. Izvestia Academy of Sciences, USSR; Physics 6: 56–58.Google Scholar
  29. Komminaho, J. & Skote, M. (2001). Reynolds stress budgets in Couette and boundary layer flows. Submitted to Flow, Turbulence and Combustion.Google Scholar
  30. Kristoffersen, R. & Andersson, H. (1993). Direct simulation of low-Reynolds-number turbulent flow in a rotating channel. J. Fluid Mech. 256: 163–197.CrossRefzbMATHADSGoogle Scholar
  31. Lam, C.K.G. & Bremhorst, K.A. (1981). Modified form of K-e model for predicting wall turbulence. ASME, J. Fluids Engineering 103: 456–460.CrossRefADSGoogle Scholar
  32. Launder, B.E., Reece, G.J. & Rodi, W. (1975). Progress in the development of a Reynolds-stress turbulence closure. J. Fluid Mech. 41: 537–566.CrossRefADSGoogle Scholar
  33. Launder, B.E. & Spalding, D.B. (1972). Mathematical models of turbulence. Academic Press.Google Scholar
  34. Launder, B.E., Tselepidakis, D.P. & Younis, B.A. (1987). A second-moment closure study of rotating channel flow. J. Fluid Mech. 183: 63–75.CrossRefzbMATHADSGoogle Scholar
  35. Lindberg, P.A. (1994). Near-wall turbulence models for 3D boundary layers. Appl. Sci. Res. 53: 139–162.CrossRefzbMATHADSGoogle Scholar
  36. Lumley, J.L. (1978). Computational modeling of turbulent flows. Adv. Appl. Mech. 18: 123–177.MathSciNetCrossRefzbMATHADSGoogle Scholar
  37. Menter, F.R. (1992). Improved Two-Equation k - w Turbulence Model for Aerodynamic Flows. NASA TM-103975 Google Scholar
  38. Menter, F.R. (1993). Zonal Two Equation k - w Turbulence Models for Aerodynamic Flows. AIAA 93–2906 Google Scholar
  39. Mohammadi, B. & Pironneau, O. (1994). Analysis of the K - r model Wiley/Masson.Google Scholar
  40. Naot, D., Shavit, A. & Wolfstein, M. (1973). Two-point correlation model and the redistribution of Reynolds stresses, Phys. Fluids 16: 738–743.CrossRefzbMATHADSGoogle Scholar
  41. Piquet, J. (1999). Turbulent flows, models and physics Springer.Google Scholar
  42. Pope, S.B. (1975). A more general effective-viscosity hypothesis. J. Fluid Mech. 72: 331–340.CrossRefzbMATHADSGoogle Scholar
  43. Poroseva, S.V., Kassinos,S.C., Langer, C.A. & Reynolds, W.C. (2001). Simulation of turbulent flow in a rotating pipe using the structure-based model. In Proceedings of Turbulence and Shear Flow Phenomena II, Stockholm, June 27–29, 2001, II: 223–228.Google Scholar
  44. Reynolds, W.C. (1976). Computation of turbulent flows. Ann. Rev. Fluid Mech. 8: 183–208.CrossRefADSGoogle Scholar
  45. Rodi, W. (1976). A new algebraic relation for calculating the Reynolds stresses. Z. angew. Math. Mech. 56: T219–221.CrossRefzbMATHGoogle Scholar
  46. Rodi, W & Mansour, N.N. (1993). Low Reynolds number K-c modelling with the aid of direct simulation data. J. Fluid Mech. 250: 509–529.CrossRefzbMATHADSGoogle Scholar
  47. Rotta, J (1951). Statistische theorie nichthomogener turbulenz I. Zeitschrift für Physik 129: 547–572.MathSciNetCrossRefzbMATHADSGoogle Scholar
  48. R. Rubinstein, C.L. Rumsey, M.D. Salas, and J.L. Thomas, editors (2001). Turbulence modelling workshop ICASE Interim Report No. 37 NASA/CR-2001–210841.Google Scholar
  49. Saffman, P.G. (1970). A model for inhomogeneous turbulent flow. Proc. Roy. Soc. London A 317: 417–433.CrossRefzbMATHADSGoogle Scholar
  50. Saffman, P.G. (1967). The large-scale structure of homogeneous turbulence. J. Fluid Mech. 27: 581–593.MathSciNetCrossRefzbMATHADSGoogle Scholar
  51. Shih, T.-H. & Lumley, J.L. (1986). Second-order modeling of near-wall turbulence. Phys. Fluids 29: 971–975.Google Scholar
  52. Shih, T.-H., Reynolds, W.C. & Mansour, N.N. (1990). A spectrum model for weakly anisotropic turbulence. Phys. Fluids A 2: 1500–1502.CrossRefADSGoogle Scholar
  53. Shih, T.H., Zhu, J. & Lumley, J.L. (1992). A Realizable Reynolds Stress Algebraic Equation Model NASA TM 105993, ICOMP-92–27, CMOTT-92–14.Google Scholar
  54. Sjögren, T.I.. (1997). Development and Validation of Turbulence Models Through Experiment and Computation. Doctoral thesis, Dept. of Mechanics, KTH, Stockholm, Sweden.Google Scholar
  55. Sjögren, T.I.A & Johansson, A.V. (1998). Measurement and modelling of homogeneous axisymmetric turbulence. J. Fluid Mech. 374: 59–90.CrossRefADSGoogle Scholar
  56. Sjögren, T.I.A & Johansson, A.V. (2000). Development and calibration of algebraic non-linear models for terms in the Reynolds stress transport equations. Phys. Fluids 12: 1554–1572.CrossRefzbMATHADSGoogle Scholar
  57. So, R.M.C., Zhang, H.S. & Speziale, C.G. (1991). Near-wall modeling of the dissipation rate equation. AIAA J. 29: 2069–2076.CrossRefzbMATHADSGoogle Scholar
  58. Spencer, A.J.M. & Rivlin, R.S. (1959). The theory of matrix polynomials and its application to the mechanics of isotropic continua. Arch. Rat. Mech. Anal. 2: 309–336.MathSciNetCrossRefzbMATHGoogle Scholar
  59. Speziale, C.G. (1991). Analytical methods for the development of Reynolds-stress closures in turbulence. Ann. Rev. Fluid Mech. 23: 107–157.MathSciNetCrossRefADSGoogle Scholar
  60. Speziale, C.G. Abid, R. & Anderson, E.C. (1992). Critical evaluation of two-equation models for near-wall turbulence. AIAA J. 30: 324–331.CrossRefzbMATHADSGoogle Scholar
  61. Speziale, C.G., Sarkar, S. & Gatski, T.B. (1991). Modelling the pressure-strain correlation of turbulence: an invariant dynamical systems approach. J. Fluid Mech. 227: 245–272.CrossRefzbMATHADSGoogle Scholar
  62. Speziale, C.G. & Xu, X.-H. (1996). Towards the development of second-order closure models for nonequilibrium turbulent flows. Int. J. Heat and Fluid Flow 17: 238–244.CrossRefGoogle Scholar
  63. Taulbee, D.B. (1992). An improved algebraic Reynolds stress model and corresponding nonlinear stress model. Phys. Fluids 4: 2555–2561.CrossRefzbMATHADSGoogle Scholar
  64. Taulbee, D.B., Sonnenmeier, J.R. & Wall, K.M. (1994). Stress relation for three-dimensional turbulent flows. Phys. Fluids 6: 1399–1401.CrossRefzbMATHADSGoogle Scholar
  65. Tavoularis, S. & Corrsin, S. (1981). Experiments in nearly homogeneous turbulent shear flow with a uniform mean temperature gradient. Part I. J. Fluid Mech. 104: 311–347.CrossRefADSGoogle Scholar
  66. Wallin, S. & Johansson, A.V. (2000). An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows. J. Fluid Mech. 403: 89–132.MathSciNetCrossRefzbMATHADSGoogle Scholar
  67. Wallin, S. & Johansson, A.V. (2001). Modelling of streamline curvature effects on turbulence in explicit algebraic Reynolds stress turbulence models. In Proceedings of Turbulence and Shear Flow Phenomena II, Stockholm, June 27–29, 2001, 11:223–228. Also to appear in revised form in Int. J. Heat and Fluid Flow.Google Scholar
  68. Wikström, P.M., Wallin, S. & Johansson, A.V. (2000). Derivation and investigation of a new explicit algebraic model for the passive scalar flux. Phys. Fluids 12: 688–702.CrossRefzbMATHADSGoogle Scholar
  69. Wilcox, D.C. (1994). Turbulence modeling for CFD DCW Industries Inc. ISBN 0–9636051–0–0, USA 1994.Google Scholar

Copyright information

© Springer-Verlag Wien 2002

Authors and Affiliations

  1. 1.Department of MechanicsRoyal Institute of Technology (KTH)StockholmSweden

Personalised recommendations