Skip to main content

The Problem of Turbulence and the Manifold of Asymptotic Solutions of the Navier-Stokes Equations

  • Chapter
Theories of Turbulence

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 442))

Abstract

After a brief introduction to the concepts of energy stability, global stability and linear stability three theoretical approaches to different cases of hydrodynamic turbulence under stationary external conditions are discussed. Phase turbulence may occur in the weakly nonlinear limit of the Navier-Stokes-equations of motion when the instability of the basic primary state occurs in the form of a highly degenerate bifurcation as, for example, in the case of convection in a fluid layer heated from below and rotating about a vertical axis. Another quite generally applicable approach towards understanding turbulent fluid flow and its coherent structures in particular is the sequence-of-bifurcations approach. Discrete transitions from simple to complex fluid flows can be analyzed in the form of successive bifurcations when the system exhibits a maximum of symmetries based on the assumption of homogeneity in two spatial dimensions. The spatially periodic solutions generated through the sequence-of-bifurcations approach may not be realized in experimental situations where inhomogeneous onsets of disturbances may lead to chaotic fluid flows long before all spatially periodic solutions become unstable. But the tertiary and quaternary solutions exhibit in the clearest way the dynamic mechanisms that operate in turbulent states of flow. Finally the theory of bounds for turbulent transports in the asymptotic range of high Reynolds and Rayleigh numbers is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Busse, EH. (1967a). The stability of finite amplitude cellular convection and its relation to an extremum principle. J. Fluid Mech. 30: 625–649.

    Article  MATH  ADS  Google Scholar 

  • Busse, F.H. (1967b). On the stability of two-dimensional convection in a layer heated from below. J. Math. Phys. 46: 140–150.

    MATH  Google Scholar 

  • Busse, F.H. (1969a). Bounds on the transport of mass and momentum by turbulent flow between parallel plates. J. Applied Math. Phys. (ZAMP) 20: 1–14.

    Article  MATH  Google Scholar 

  • Busse, F.H. (1969b). On Howard’s upper bound for heat transport by turbulent convection. J. Fluid Mech. 37: 457–477.

    Article  MATH  ADS  Google Scholar 

  • Busse, F.H. (1970). Bounds for turbulent shear flow. J. Fluid Mech. 41: 219–240.

    Article  MATH  ADS  Google Scholar 

  • Busse, F.H. (1972). A property of the energy stability limit for plane parallel shear flow. Arch. Rat. Mech. Anals. 47: 28–35.

    MathSciNet  MATH  Google Scholar 

  • Busse, F.H. (1978). The optimum theory of turbulence. Advances inAppl. Mech. 18: 77–121.

    Article  MathSciNet  MATH  Google Scholar 

  • Busse, F.H. (1986). Phase-turbulence in convection near threshold. Contemporary Mathematics 56: 1–8.

    Article  MathSciNet  Google Scholar 

  • Busse, F.H. (1994). Spoke Pattern Convection. ACTA MECHANICA (Suppl.) 4: 11–17.

    Google Scholar 

  • Busse, F.H. (1996). Bounds for Properties of Complex Systems, pp. 1–9, in “Nonlinear Physics of Complex Systems”, J. Parisi, S.C. Müller, W. Zimmermann (eds.), Lecture Notes in Physics 476

    Google Scholar 

  • Busse, F.H., and Bolton, E.W. (1984). Instabilities of convection rolls with stress-free boundaries near threshold. J. Fluid Mech. 146: 115–125.

    Article  MATH  ADS  Google Scholar 

  • Busse, F.H., and Heikes, K.E. (1980). Convection in a rotating layer: A simple case of turbulence. SCIENCE 208: 173–175.

    Article  ADS  Google Scholar 

  • Busse, F.H., and Joseph, D.D. (1972). Bounds for heat transport in a porous layer. J. Fluid Mech. 54: 52 1543.

    Google Scholar 

  • Busse, F.H., Kropp, M., and Zaks. M. (1992). Spatio-temporal structures in phase-turbulent convection. Physica D 61: 94–105.

    Article  MATH  ADS  Google Scholar 

  • Busse, F.H., and Whitehead, J.A. (1971). Instabilities of convection rolls in a high Prandtl number fluid. J. Fluid Mech. 47: 305–320.

    Article  ADS  Google Scholar 

  • Busse, F.H., and Whitehead, J.A. (1974). Oscillatory and collective instabilities in large Prandtl number convection. J. Fluid Mech. 66: 67–79.

    Article  ADS  Google Scholar 

  • Chu, T.Y., and Goldstein, R.J. (1973). Turbulent convection in a horizontal layer of water. J. Fluid Mech. 60: 141–159.

    Article  ADS  Google Scholar 

  • Clever, R.M., and Busse, F.H. (1979). Nonlinear properties of convection rolls in a horizontal layer rotating about a vertical axis. J. Fluid Mech. 94: 609–627.

    Article  MATH  ADS  Google Scholar 

  • Clever, R.M., and Busse, F.H. (1989). Three-dimensional knot convection in a layer heated from below. J. Fluid Mech. 198: 345–363.

    Article  MATH  ADS  Google Scholar 

  • Clever, R.M., and Busse, F.H. (1992). Three-dimensional convection in a horizontal fluid layer subjected to a constant shear. J. Fluid Mech. 234: 511–527.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Clever, R.M., and Busse, F.H. (1994). Steady and Oscillatory Bimodal Convection. J. Fluid Mech. 271: 103–118.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Combarnous, M., and Le Fur, B. (1969). Transfert de chaleur par convection naturelle dans une couche poreuse horizontale. C.R. Acad. Sc. Paris 269: 1005–1012.

    Google Scholar 

  • Deardorff, J.W., and Willis, G.E. (1967). Investigation of turbulent thermal convection between horizontal plates. J. Fluid Mech. 28: 675–704.

    Article  ADS  Google Scholar 

  • Doering, C.R., and Constantin, P. (1994). Variational bounds on energy dissipation in incompressible flows: shear flow. Phys. Rev. E 49: 4087–4099.

    Article  MathSciNet  ADS  Google Scholar 

  • Goldstein, R.J., and Graham, D.J. (1969). Stability of a horizontal fluid layer with zero shear boundaries. Phys. Fluids 12: 1133–1137.

    Article  ADS  Google Scholar 

  • Golubitsky, M., Swift, J.W., and Knobloch, E. (1984). Symmetries and Pattern Selection in RayleighBénard Convection. Physica D 100: 249–276.

    Article  MathSciNet  ADS  Google Scholar 

  • Grossmann, S. (2000). The onset of shear flow turbulence. Rev. Mod. Phys. 72: 603–618.

    Article  ADS  Google Scholar 

  • Heikes, K.E., and Busse, F.H. (1980). Weakly nonlinear turbulence in a rotating convection layer. Annals N.Y. Academy of Sciences 357: 28–36.

    Article  ADS  Google Scholar 

  • Howard, L.N. (1963). Heat transport by turbulent convection. J. Fluid Mech. 17: 405–432.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Joseph, D.D. (1976). Stability of fluid motions, vol. 1. Springer, Berlin Heidelberg, New York.

    Google Scholar 

  • Kerswell, R.R. (1998). Unification of variational principles for turbulent shear flows: The background method of Doering-Constantin and Howard-Busse’s mean-fluctuation formulation. Physica D 121: 175–192.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Kramer, L., Schober, H.R., and Zimmermann, W. (1988). Pattern competition and the decay of unstable patterns in quasi-one-dimensional systems. Physica D 31: 212–226.

    Article  MATH  ADS  Google Scholar 

  • Krishnamurti, R. (1970). On the transition to turbulent convection. Part 1. The transition from two to three-dimensional flow. J. Fluid Mech. 42: 295–307.

    Article  ADS  Google Scholar 

  • Köppers, G., and Lortz, D. (1969). Transition from laminar convection to thermal turbulence in a rotating fluid layer. J. Fluid Mech. 35: 609–620.

    Article  ADS  Google Scholar 

  • Lathrop, D.P., Fineberg, J., and Swinney, H.L. (1992). Transition to shear-driven turbulence in Couette-Taylor flow. Phys. Rev. A 46: 6390–6405.

    Article  ADS  Google Scholar 

  • Laufer, J. (1954). The Structure of Turbulence in Fully Developed Pipe Flow. NACA Rep. 1174.

    Google Scholar 

  • Malkus, W.V.R. (1954a). The heat transport and spectrum of thermal turbulence. Proc. Roy. Soc. London A225: 196–212.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Malkus, W.V.R. (1954b). Discrete transitions in turbulent convection. Proc. Roy. Soc. London A225: 185–195.

    Article  MathSciNet  ADS  Google Scholar 

  • Nagata, M. (1990). Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity. J. Fluid Mech. 217: 519–527.

    Article  MathSciNet  ADS  Google Scholar 

  • Nagata, M., and Busse, F.H. (1983). Three-dimensional tertiary motions in a plane shear layer. J. Fluid Mech. 135: 1–26.

    Article  MATH  ADS  Google Scholar 

  • Nicodemus, R., Grossmann, S., and Holthaus, M. (1997). Variational bound on energy dissipation in plane Couette flow. Phys. Rev. E 56: 6774–6786.

    Article  MathSciNet  ADS  Google Scholar 

  • Reichardt, H. (1959). Gesetzmäßigkeiten der geradlinigen turbulenten Couetteströmung. Mitt. MaxPlanck-Institut für Strömungsforschung, Göttingen, Nr. 22

    Google Scholar 

  • Schmiegel, A., and Eckhardt, B. (1997). Fractal Stability Border in Plane Couette Flow. Phys. Rev. Lett. 79: 5250–5253.

    Article  ADS  Google Scholar 

  • Schmiegel, A., and Eckhardt, B. (2000). Persistent turbulence in annealed plane Couette flow. Europhysics. Letts. 51: 395–400.

    Article  ADS  Google Scholar 

  • Schmitt, B.J., and Wahl, W. von (1992). Decomposition of Solenoidal Fields into Poloidal Fields, Toroidal Fields and the Mean Flow. Applications to the Boussinesq-Equations. in “The Navier-Stokes Equations II–Theory and Numerical Methods”. J.G. Heywood, K. Masuda, R. Rautmann, S.A. Solonnikov, eds. Springer Lecture Notes in Mathematics 1530: 291–305.

    Google Scholar 

  • Serrin, J. (1959). On the stability of viscous fluid motions. Arch. Rat. Mech. Anal. 3: 1–13.

    Article  MathSciNet  MATH  Google Scholar 

  • Smith, G.P., and Townsend, A.A. (1982). Turbulent Couette flow between concentric cylinders at large Taylor numbers. J. Fluid Mech. 123: 187–217.

    Article  ADS  Google Scholar 

  • Straus, J.M. (1976). On the Upper Bounding Approach to Thermal Convection at Moderate Rayleigh Numbers. II. Rigid Boundaries. Dyn. Atmos. Oceans 1: 77–90.

    Article  MathSciNet  ADS  Google Scholar 

  • de la Torre-Juarez, M., and Busse, F.H. (1995). Stability of two-dimensional convection in a porous medium. J. Fluid Mech. 292: 305–323.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Vitanov, N.K., and Busse, F.H. (2001). Bounds on the convective heat transport in a rotating layer. Phys. Rev. E 63: 16303–16310.

    Article  ADS  Google Scholar 

  • Walden, R.W., and Ahlers, G. (1981). Non-Boussinesq and penetrative convection in a cylindrical cell. J. Fluid Mech. 109: 89–114.

    Article  ADS  Google Scholar 

  • Willis, G.E., and Deardorff, J.W. (1967). Confirmation and renumbering of the discrete heat flux transitions of Malkus. Phys. Fluids 10: 1861–1866.

    Article  ADS  Google Scholar 

  • Xi, H.-W., Li, X.-J., and Gunton, J.D. (1997). Direct Transition to Spatio-temporal Chaos in Low Prandtl Number Fluids. Phys. Rev. Lett. 78: 1046–1049.

    Article  ADS  Google Scholar 

  • Zippelius, A., and Siggia, E.D. (1982). Disappearance of stable convection between free-slip boundaries. Phys. Rev. A. 26: 1788–1790.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Wien

About this chapter

Cite this chapter

Busse, F.H. (2002). The Problem of Turbulence and the Manifold of Asymptotic Solutions of the Navier-Stokes Equations. In: Oberlack, M., Busse, F.H. (eds) Theories of Turbulence. International Centre for Mechanical Sciences, vol 442. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2564-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2564-9_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83694-1

  • Online ISBN: 978-3-7091-2564-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics