The Problem of Turbulence and the Manifold of Asymptotic Solutions of the Navier-Stokes Equations

Part of the International Centre for Mechanical Sciences book series (CISM, volume 442)


After a brief introduction to the concepts of energy stability, global stability and linear stability three theoretical approaches to different cases of hydrodynamic turbulence under stationary external conditions are discussed. Phase turbulence may occur in the weakly nonlinear limit of the Navier-Stokes-equations of motion when the instability of the basic primary state occurs in the form of a highly degenerate bifurcation as, for example, in the case of convection in a fluid layer heated from below and rotating about a vertical axis. Another quite generally applicable approach towards understanding turbulent fluid flow and its coherent structures in particular is the sequence-of-bifurcations approach. Discrete transitions from simple to complex fluid flows can be analyzed in the form of successive bifurcations when the system exhibits a maximum of symmetries based on the assumption of homogeneity in two spatial dimensions. The spatially periodic solutions generated through the sequence-of-bifurcations approach may not be realized in experimental situations where inhomogeneous onsets of disturbances may lead to chaotic fluid flows long before all spatially periodic solutions become unstable. But the tertiary and quaternary solutions exhibit in the clearest way the dynamic mechanisms that operate in turbulent states of flow. Finally the theory of bounds for turbulent transports in the asymptotic range of high Reynolds and Rayleigh numbers is outlined.


Rayleigh Number Asymptotic Solution Couette Flow Fluid Layer Steady Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Busse, EH. (1967a). The stability of finite amplitude cellular convection and its relation to an extremum principle. J. Fluid Mech. 30: 625–649.CrossRefzbMATHADSGoogle Scholar
  2. Busse, F.H. (1967b). On the stability of two-dimensional convection in a layer heated from below. J. Math. Phys. 46: 140–150.zbMATHGoogle Scholar
  3. Busse, F.H. (1969a). Bounds on the transport of mass and momentum by turbulent flow between parallel plates. J. Applied Math. Phys. (ZAMP) 20: 1–14.CrossRefzbMATHGoogle Scholar
  4. Busse, F.H. (1969b). On Howard’s upper bound for heat transport by turbulent convection. J. Fluid Mech. 37: 457–477.CrossRefzbMATHADSGoogle Scholar
  5. Busse, F.H. (1970). Bounds for turbulent shear flow. J. Fluid Mech. 41: 219–240.CrossRefzbMATHADSGoogle Scholar
  6. Busse, F.H. (1972). A property of the energy stability limit for plane parallel shear flow. Arch. Rat. Mech. Anals. 47: 28–35.MathSciNetzbMATHGoogle Scholar
  7. Busse, F.H. (1978). The optimum theory of turbulence. Advances inAppl. Mech. 18: 77–121.MathSciNetCrossRefzbMATHGoogle Scholar
  8. Busse, F.H. (1986). Phase-turbulence in convection near threshold. Contemporary Mathematics 56: 1–8.MathSciNetCrossRefGoogle Scholar
  9. Busse, F.H. (1994). Spoke Pattern Convection. ACTA MECHANICA (Suppl.) 4: 11–17.Google Scholar
  10. Busse, F.H. (1996). Bounds for Properties of Complex Systems, pp. 1–9, in “Nonlinear Physics of Complex Systems”, J. Parisi, S.C. Müller, W. Zimmermann (eds.), Lecture Notes in Physics 476Google Scholar
  11. Busse, F.H., and Bolton, E.W. (1984). Instabilities of convection rolls with stress-free boundaries near threshold. J. Fluid Mech. 146: 115–125.CrossRefzbMATHADSGoogle Scholar
  12. Busse, F.H., and Heikes, K.E. (1980). Convection in a rotating layer: A simple case of turbulence. SCIENCE 208: 173–175.CrossRefADSGoogle Scholar
  13. Busse, F.H., and Joseph, D.D. (1972). Bounds for heat transport in a porous layer. J. Fluid Mech. 54: 52 1543.Google Scholar
  14. Busse, F.H., Kropp, M., and Zaks. M. (1992). Spatio-temporal structures in phase-turbulent convection. Physica D 61: 94–105.CrossRefzbMATHADSGoogle Scholar
  15. Busse, F.H., and Whitehead, J.A. (1971). Instabilities of convection rolls in a high Prandtl number fluid. J. Fluid Mech. 47: 305–320.CrossRefADSGoogle Scholar
  16. Busse, F.H., and Whitehead, J.A. (1974). Oscillatory and collective instabilities in large Prandtl number convection. J. Fluid Mech. 66: 67–79.CrossRefADSGoogle Scholar
  17. Chu, T.Y., and Goldstein, R.J. (1973). Turbulent convection in a horizontal layer of water. J. Fluid Mech. 60: 141–159.CrossRefADSGoogle Scholar
  18. Clever, R.M., and Busse, F.H. (1979). Nonlinear properties of convection rolls in a horizontal layer rotating about a vertical axis. J. Fluid Mech. 94: 609–627.CrossRefzbMATHADSGoogle Scholar
  19. Clever, R.M., and Busse, F.H. (1989). Three-dimensional knot convection in a layer heated from below. J. Fluid Mech. 198: 345–363.CrossRefzbMATHADSGoogle Scholar
  20. Clever, R.M., and Busse, F.H. (1992). Three-dimensional convection in a horizontal fluid layer subjected to a constant shear. J. Fluid Mech. 234: 511–527.MathSciNetCrossRefzbMATHADSGoogle Scholar
  21. Clever, R.M., and Busse, F.H. (1994). Steady and Oscillatory Bimodal Convection. J. Fluid Mech. 271: 103–118.MathSciNetCrossRefzbMATHADSGoogle Scholar
  22. Combarnous, M., and Le Fur, B. (1969). Transfert de chaleur par convection naturelle dans une couche poreuse horizontale. C.R. Acad. Sc. Paris 269: 1005–1012.Google Scholar
  23. Deardorff, J.W., and Willis, G.E. (1967). Investigation of turbulent thermal convection between horizontal plates. J. Fluid Mech. 28: 675–704.CrossRefADSGoogle Scholar
  24. Doering, C.R., and Constantin, P. (1994). Variational bounds on energy dissipation in incompressible flows: shear flow. Phys. Rev. E 49: 4087–4099.MathSciNetCrossRefADSGoogle Scholar
  25. Goldstein, R.J., and Graham, D.J. (1969). Stability of a horizontal fluid layer with zero shear boundaries. Phys. Fluids 12: 1133–1137.CrossRefADSGoogle Scholar
  26. Golubitsky, M., Swift, J.W., and Knobloch, E. (1984). Symmetries and Pattern Selection in RayleighBénard Convection. Physica D 100: 249–276.MathSciNetCrossRefADSGoogle Scholar
  27. Grossmann, S. (2000). The onset of shear flow turbulence. Rev. Mod. Phys. 72: 603–618.CrossRefADSGoogle Scholar
  28. Heikes, K.E., and Busse, F.H. (1980). Weakly nonlinear turbulence in a rotating convection layer. Annals N.Y. Academy of Sciences 357: 28–36.CrossRefADSGoogle Scholar
  29. Howard, L.N. (1963). Heat transport by turbulent convection. J. Fluid Mech. 17: 405–432.MathSciNetCrossRefzbMATHADSGoogle Scholar
  30. Joseph, D.D. (1976). Stability of fluid motions, vol. 1. Springer, Berlin Heidelberg, New York.Google Scholar
  31. Kerswell, R.R. (1998). Unification of variational principles for turbulent shear flows: The background method of Doering-Constantin and Howard-Busse’s mean-fluctuation formulation. Physica D 121: 175–192.MathSciNetCrossRefzbMATHADSGoogle Scholar
  32. Kramer, L., Schober, H.R., and Zimmermann, W. (1988). Pattern competition and the decay of unstable patterns in quasi-one-dimensional systems. Physica D 31: 212–226.CrossRefzbMATHADSGoogle Scholar
  33. Krishnamurti, R. (1970). On the transition to turbulent convection. Part 1. The transition from two to three-dimensional flow. J. Fluid Mech. 42: 295–307.CrossRefADSGoogle Scholar
  34. Köppers, G., and Lortz, D. (1969). Transition from laminar convection to thermal turbulence in a rotating fluid layer. J. Fluid Mech. 35: 609–620.CrossRefADSGoogle Scholar
  35. Lathrop, D.P., Fineberg, J., and Swinney, H.L. (1992). Transition to shear-driven turbulence in Couette-Taylor flow. Phys. Rev. A 46: 6390–6405.CrossRefADSGoogle Scholar
  36. Laufer, J. (1954). The Structure of Turbulence in Fully Developed Pipe Flow. NACA Rep. 1174.Google Scholar
  37. Malkus, W.V.R. (1954a). The heat transport and spectrum of thermal turbulence. Proc. Roy. Soc. London A225: 196–212.MathSciNetCrossRefzbMATHADSGoogle Scholar
  38. Malkus, W.V.R. (1954b). Discrete transitions in turbulent convection. Proc. Roy. Soc. London A225: 185–195.MathSciNetCrossRefADSGoogle Scholar
  39. Nagata, M. (1990). Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity. J. Fluid Mech. 217: 519–527.MathSciNetCrossRefADSGoogle Scholar
  40. Nagata, M., and Busse, F.H. (1983). Three-dimensional tertiary motions in a plane shear layer. J. Fluid Mech. 135: 1–26.CrossRefzbMATHADSGoogle Scholar
  41. Nicodemus, R., Grossmann, S., and Holthaus, M. (1997). Variational bound on energy dissipation in plane Couette flow. Phys. Rev. E 56: 6774–6786.MathSciNetCrossRefADSGoogle Scholar
  42. Reichardt, H. (1959). Gesetzmäßigkeiten der geradlinigen turbulenten Couetteströmung. Mitt. MaxPlanck-Institut für Strömungsforschung, Göttingen, Nr. 22Google Scholar
  43. Schmiegel, A., and Eckhardt, B. (1997). Fractal Stability Border in Plane Couette Flow. Phys. Rev. Lett. 79: 5250–5253.CrossRefADSGoogle Scholar
  44. Schmiegel, A., and Eckhardt, B. (2000). Persistent turbulence in annealed plane Couette flow. Europhysics. Letts. 51: 395–400.CrossRefADSGoogle Scholar
  45. Schmitt, B.J., and Wahl, W. von (1992). Decomposition of Solenoidal Fields into Poloidal Fields, Toroidal Fields and the Mean Flow. Applications to the Boussinesq-Equations. in “The Navier-Stokes Equations II–Theory and Numerical Methods”. J.G. Heywood, K. Masuda, R. Rautmann, S.A. Solonnikov, eds. Springer Lecture Notes in Mathematics 1530: 291–305.Google Scholar
  46. Serrin, J. (1959). On the stability of viscous fluid motions. Arch. Rat. Mech. Anal. 3: 1–13.MathSciNetCrossRefzbMATHGoogle Scholar
  47. Smith, G.P., and Townsend, A.A. (1982). Turbulent Couette flow between concentric cylinders at large Taylor numbers. J. Fluid Mech. 123: 187–217.CrossRefADSGoogle Scholar
  48. Straus, J.M. (1976). On the Upper Bounding Approach to Thermal Convection at Moderate Rayleigh Numbers. II. Rigid Boundaries. Dyn. Atmos. Oceans 1: 77–90.MathSciNetCrossRefADSGoogle Scholar
  49. de la Torre-Juarez, M., and Busse, F.H. (1995). Stability of two-dimensional convection in a porous medium. J. Fluid Mech. 292: 305–323.MathSciNetCrossRefzbMATHADSGoogle Scholar
  50. Vitanov, N.K., and Busse, F.H. (2001). Bounds on the convective heat transport in a rotating layer. Phys. Rev. E 63: 16303–16310.CrossRefADSGoogle Scholar
  51. Walden, R.W., and Ahlers, G. (1981). Non-Boussinesq and penetrative convection in a cylindrical cell. J. Fluid Mech. 109: 89–114.CrossRefADSGoogle Scholar
  52. Willis, G.E., and Deardorff, J.W. (1967). Confirmation and renumbering of the discrete heat flux transitions of Malkus. Phys. Fluids 10: 1861–1866.CrossRefADSGoogle Scholar
  53. Xi, H.-W., Li, X.-J., and Gunton, J.D. (1997). Direct Transition to Spatio-temporal Chaos in Low Prandtl Number Fluids. Phys. Rev. Lett. 78: 1046–1049.CrossRefADSGoogle Scholar
  54. Zippelius, A., and Siggia, E.D. (1982). Disappearance of stable convection between free-slip boundaries. Phys. Rev. A. 26: 1788–1790.CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Wien 2002

Authors and Affiliations

  1. 1.Institute of PhysicsUniversity of BayreuthBayreuthGermany

Personalised recommendations