Skip to main content

Theory of Material Instability in Incrementally Nonlinear Plasticity

  • Conference paper
Material Instabilities in Elastic and Plastic Solids

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 414))

Abstract

Material instability in time-independent elastic-plastic solids is studied as a phenomenon strictly related to qualitative properties of an incremental constitutive law. A broad class of incrementally nonlinear material models is considered which encompasses classical elastoplasticity with a single smooth yield surface, as well as multi-mode plasticity with many internal mechanisms of inelastic deformation which give the yield-surface vertex effect. Three types of instability are investigated: with respect to internal microstructural rearrangements, for deviations from uniform deformation under boundary displacement control, and under flexible constraints corresponding to deformation-sensitive loading. It is shown that the respective instability criteria are different and, moreover, dependent on whether the instability concerns a single equilibrium state or a process of quasi-static deformation. Instability of equilibrium is of dynamic type, while instability of a process going through stable equilibrium states is related to a continuous spectrum of quasi-static bifurcation points along the deformation path. Basic concepts are outlined by the example of a one-dimensional discretized tensile bar and extended to incipient localization of deformation in a three-dimensional continuum. Under symmetry restrictions imposed on an incrementally nonlinear constitutive law, a unified approach to material instabilities of various types is presented which is based on the single energy criterion. By specifying the incremental energy consumption to second-order terms and determining the circumstances in which it fails to be minimized along a fundamental deformation path, the onset of material instability of a selected type can be estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asaro, R.J. (1983). Micromechanics of crystals and polycrystals. In Advances in Applied Mechanics, Vol. 23. New York: Acad. Press. 1–115.

    Google Scholar 

  • Asaro, R.J. and Rice, J.R. (1977). Strain localization in ductile single crystals. J. Mech. Phys. Solids 25: 309–338.

    Article  MATH  Google Scholar 

  • Ball, J.M., and James, R.D. (1987). Fine phase mixtures as minimizers of energy. Arch. Rat. Mech. Anal. 100: 13–52.

    Article  MathSciNet  MATH  Google Scholar 

  • Bigoni, D., and Loret, B. (1999). Effects of elastic anisotropy on strain localization and flutter instability in plastic solids. J. Mech. Phys. Solids 47: 1409–1436.

    Article  MathSciNet  MATH  Google Scholar 

  • Bigoni, D., and Zaccaria, D. (1992). Loss of strong ellipticity in non-associative elastoplasticity. J. Mech. Phys. Solids 40: 1313–1331.

    Article  MathSciNet  MATH  Google Scholar 

  • Biot, M.A. (1965). Mechanics of Incremental Deformations. New York: John Wiley and Sons.

    Google Scholar 

  • de Borst, R., and van der Giessen, E., eds. (1998). Material Instabilities in Solids. Chichester: John Wiley and Sons.

    Google Scholar 

  • Chambon, R., Crochepeyre, S., and J. Desrues (2000). Localization criteria for non-linear constitutive equations of geomaterials. Mech. Cohesive Frictional Mat. 5: 61–82.

    Article  Google Scholar 

  • Cottle, R.W., Pang, J.-S., and Stone, R.E. (1992). The Linear Complementarily Problem. San Diego: Acad. Press.

    Google Scholar 

  • Drucker, D.C. (1950). Some implications of work hardening and ideal plasticity. Q. Appl. Math. 7: 411–418.

    MathSciNet  MATH  Google Scholar 

  • Drucker, D.C. (1964). On the postulate of stability of material in the mechanics of continua. J. Mécanique 3: 235–249.

    MathSciNet  Google Scholar 

  • Drugan, W.J. (1998). Thermodynamic equivalence of steady-state shocks and smooth waves in general media; applications to elastic-plastic shocks and dynamic fracture. J. Mech. Phys. Solids 46: 313–336.

    Article  MathSciNet  MATH  Google Scholar 

  • Drugan, W.J., and Shen, Y. (1990). Finite deformation analysis of restrictions on moving strong discontinuity surfaces in elastic-plastic materials: quasi-static and dynamic deformations. J. Mech. Phys. Solids 38: 553–574.

    Article  MathSciNet  MATH  Google Scholar 

  • Eshelby, J.D. (1957). The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. Roy. Soc. London A 241: 376–396.

    Article  MathSciNet  MATH  Google Scholar 

  • Fedelich, B., and Ehrlaher, A. (1997). An analysis of stability of equilibrium and of quasi-static transformations on the basis of the dissipation function. Eur. J. Mech. A/Solids 16: 833–855.

    MATH  Google Scholar 

  • Fleck, N.A., and Hutchinson, J.W. (1997). Strain gradient plasticity. In Advances in Applied Mechanics, Vol. 33. New York: Acad. Press. 295–361.

    Google Scholar 

  • Franciosi, P., and Zaoui, A. (1991). Crystal hardening and the issue of uniqueness, Int. J. Plasticity 7: 295–311.

    Article  MATH  Google Scholar 

  • Graves, L. (1939). The Weierstrass condition for multiple integral variation problem. Duke Math. J. 5: 656–660.

    Article  MathSciNet  Google Scholar 

  • Hadamard, J. (1903). Leçons sur la Propagation des Ondes et les Equations de l’Hydro-dynamique. Paris: Hermann.

    Google Scholar 

  • Havner, K.S. (1992). Finite Plastic Deformation of Crystalline Solids. Cambridge: University Press.

    Book  MATH  Google Scholar 

  • Hill, R. (1958). A general theory of uniqueness and stability in elastic-plastic solids. J. Mech. Phys. Solids 6: 236–249.

    Article  MATH  Google Scholar 

  • Hill, R. (1959). Some basic principles in the mechanics of solids without a natural time. J. Mech. Phys. Solids 7: 209–225.

    Article  MathSciNet  MATH  Google Scholar 

  • Hill, R. (1962). Acceleration waves in solids. J. Mech. Phys. Solids 10: 1–16.

    Article  MathSciNet  MATH  Google Scholar 

  • Hill, R. (1967a). The essential structure of constitutive laws for metal composites and polycrystals. J. Mech. Phys. Solids 15: 79–95.

    Article  Google Scholar 

  • Hill, R. (1967b). Eigenmodal deformations in elastic/plastic continua. J. Mech. Phys. Solids 15: 371–386.

    Article  Google Scholar 

  • Hill, R. (1967c). On the classical constitutive relations for elastic/plastic solids. In Broberg, B. at al., eds., Recent Progress in Applied Mechanics, The Folke Odkvist Volume. Stockholm: Almqvist and Wiksell. 241–249.

    Google Scholar 

  • Hill, R. (1968). On constitutive inequalities for simple materials. J. Mech. Phys. Solids 16: 229–242, 315–322.

    Article  Google Scholar 

  • Hill, R. (1978). Aspects of invariance in solids mechanics. In Advances in Applied Mechanics, Vol. 18. New York: Acad. Press. 1–75.

    Google Scholar 

  • Hill, R. (1983). On intrinsic eigenstates in plasticity with generalized variables. Math. Proc. Camb. Phil. Soc. 93: 177–189.

    Article  MATH  Google Scholar 

  • Hill, R., and Rice, J.R. (1972). Constitutive analysis of elastic-plastic crystals at arbitrary strain. J. Mech. Phys. Solids 20: 401–413.

    Article  MATH  Google Scholar 

  • Hill, R., and Rice, J.R. (1973). Elastic potentials and the structure of inelastic constitutive laws. SIAM J. Appl. Math. 25: 448–461.

    Article  MathSciNet  MATH  Google Scholar 

  • Hutchinson, J.W. (1970). Elastic-plastic behaviour of polycrystalline metals and composites. Proc. Roy. Soc. Lond. A 319, 247–272.

    Article  Google Scholar 

  • Hutchinson, J.W., and Tvergaard, V. (1981). Shear band formation in plane strain. Int. J. Solids Structures 17: 451–470.

    Google Scholar 

  • Groot, S.R., and Mazur, P. (1962). Non-equilibrium Thermodynamics. Amsterdam: North Holland. Kolymbas, D. (1981). Bifurcation analysis for sand samples with a non-linear constitutive equation. Ing.Archiv 50: 131–140.

    Google Scholar 

  • Loret, B. (1992). Does deviation from deviatoric associativity lead to the onset of flutter instability ? J. Mech. Phys. Solids 40: 1363–1375.

    Article  MathSciNet  MATH  Google Scholar 

  • Maier, G. (1969). “Linear” flow-laws of elastoplasticity: a unified general approach. Rend. Acc. Naz. Lincei, Ser. VIII, XLVII:266–276.

    Google Scholar 

  • Mandel, J. (1966). Conditions de stabilité et postulat de Drucker. In Kravtchenko, J., ed., Rheology and Soil Mechanics. Berlin: Springer. 58–67.

    Google Scholar 

  • Needleman, A., and Tvergaard, V. (1992). Analyses of plastic flow localization in metals. Appl. Mech. Rev. 45: no 3, part 2, S3–S18.

    Article  Google Scholar 

  • Nguyen, Q.S. (1993). Bifurcation and stability of time-independent standard dissipative systems. In Nguyen, Q.S., ed., CISM Lecture Notes No. 327. Wien-New York: Springer. 45–94.

    Google Scholar 

  • Nguyen, Q.S., and Petryk, H. (1991). A constitutive inequality for time-independent dissipative solids. C. R. Acad. Sci. Paris, Serie II312:7–12.

    Google Scholar 

  • Nguyen, Q.S., and Radenkovic, D. (1976). Stability of equilibrium in elastic plastic solids. In Lecture Notes in Mathematics, Vol. 503. Berlin: Springer. 403–414.

    Google Scholar 

  • Ogden, R.W. (1984a). On Eulerian and Lagrangean objectivity in continuum mechanics. Arch. Mech. 36: 207–218.

    MathSciNet  MATH  Google Scholar 

  • Ogden, R.W. (1984b). Non-linear Elastic Deformations. Chichester: Ellis Horwood.

    Google Scholar 

  • Peirce, D. (1983). Shear band bifurcations in ductile single crystals. J. Mech. Phys. Solids 31: 133–153.

    Article  MATH  Google Scholar 

  • Petryk, H. (1982). A consistent energy approach to defining stability of plastic deformation processes. In Schroeder, F.H., ed., Stability in the Mechanics of Continua, Proc. IUTAM Symp. Nümbrecht 1981. Berlin-Heidelberg: Springer. 262–272.

    Google Scholar 

  • Petryk, H. (1985a). On energy criteria of plastic instability. In Plastic Instability, Proc. Considère Memorial. Paris: Ecole Nat. Ponts Chauss. 215–226.

    Google Scholar 

  • Petryk, H. (1985b). On stability and symmetry conditions in time-independent plasticity. Arch. Mech. 37: 503–520.

    MATH  Google Scholar 

  • Petryk, H. (1989). On constitutive inequalities and bifurcation in elastic-plastic solids with a yield-surface vertex. J. Mech. Phys. Solids 37: 265–291.

    Article  MathSciNet  MATH  Google Scholar 

  • Petryk, H. (1991a). On the second-order work in plasticity, Arch. Mech. 43: 377–397.

    MathSciNet  MATH  Google Scholar 

  • Petryk, H. (1991b). The energy criteria of instability in time-independent inelastic solids. Arch. Mech. 43: 519–545.

    MathSciNet  MATH  Google Scholar 

  • Petryk, H. (1992a). Material instability and strain-rate discontinuities in incrementally nonlinear continua. J. Mech. Phys. Solids 40: 1227–1250.

    Article  MathSciNet  MATH  Google Scholar 

  • Petryk, H. (1992b). On stability of time-independent materials at finite strain. In Besdo, D., and Stein, E., eds., Finite Inelastic Deformations-Theory and Applications. Berlin-Heidelberg: Springer. 189–196.

    Chapter  Google Scholar 

  • Petryk, H. (1993a). Theory of bifurcation and instability in time-independent plasticity. In Nguyen, Q.S., ed., CISMLecture Notes No. 327. Wien-New York: Springer. 95–152.

    Google Scholar 

  • Petryk, H. (1993b). Stability and constitutive inequalities in plasticity. In Muschik, W., ed., CISM Lecture Notes No. 336. Wien-New York: Springer. 259–329.

    Google Scholar 

  • Petryk, H. (1995). Thermodynamic stability of equilibrium in plasticity. J. Non-Equil. Thermodyn. 20: 132–149.

    MATH  Google Scholar 

  • Petryk, H. (1997a). Instability of plastic deformation processes. In Tatsumi, T., et al., eds., Theoretical and Applied Mechanics 1996, Proc. XIXth IUTAM Congress, Kyoto. Amsterdam: Elsevier. 497–516.

    Google Scholar 

  • Petryk, H. (1997b). Plastic instability: criteria and computational approaches. Arch. Comp. Meth. Engng. 4: 111–151.

    Article  MathSciNet  Google Scholar 

  • Petryk, H. (1999a). On the micro-macro transition and hardening moduli in plasticity. In Bruhns, O.T., and Stein, E., eds., Proc. IUTAM Symp. Micro-and Macrostructural Aspects of Thermoplasticity, Bochum 1997. Dordrecht: Kluwer. 219–230.

    Google Scholar 

  • Petryk, H. (1999b). (Manuscript in preparation).

    Google Scholar 

  • Petryk, H. (2000). General conditions for uniqueness in materials with multiple mechanisms of inelastic deformation. J. Mech. Phys. Solids 48: 367–396.

    Article  MathSciNet  MATH  Google Scholar 

  • Petryk, H., and Thermann, K. (1992). On discretized plasticity problems with bifurcations. Int. J. Solids Structures 29: 745–765.

    Article  MathSciNet  MATH  Google Scholar 

  • Petryk, H., and Thermann, K. (1996). Post-critical plastic deformation of biaxailly stretched sheets. Int. J. Solids Structures 33: 689–705.

    Article  MATH  Google Scholar 

  • Raniecki, B. (1979). Uniqueness criteria in solids with non-associated plastic flow laws at finite deformations. Bull. Acad. Polon. Sci., Sér sci. techn. 27: 391–399.

    MathSciNet  Google Scholar 

  • Raniecki, B., and Bruhns, O.T. (1981). Bounds to bifurcation stresses in solids with non-associated plastic flow law at finite strain. J. Mech. Phys. Solids 29: 153–172.

    Article  MathSciNet  MATH  Google Scholar 

  • Rice, J.R. (1971). Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity. J. Mech. Phys. Solids 19: 433–455.

    Article  MATH  Google Scholar 

  • Rice, J.R. (1977). The localization of plastic deformation. In Koiter, W.T., ed., Theoretical and Applied Mechanics. Amsterdam: North- Holland. 207–220.

    Google Scholar 

  • Rice, J.R., and Rudnicki, J.W. (1980). A note on some features of the theory of localization of deformation. Int. J. Solids Structures 16: 597–605.

    Article  MathSciNet  MATH  Google Scholar 

  • Rizzi, E., Maier, G., and Willam, K. (1996). On failure indicators in multi-dissipative materials. Int..1. Solids Structures 33: 3187–3214.

    Article  MATH  Google Scholar 

  • Ryzhak, E.I. (1987). Necessity of Hadamard conditions for stability of elastic-plastic solids (in Russian). Mekh. Tv. Tela No. 4: 101–104.

    Google Scholar 

  • Sewell, M.J. (1972). A survey of plastic buckling. In Leipholz, H.H.E., ed., Stability. Waterloo, Ontario: Univ. of Waterloo. 85–197.

    Google Scholar 

  • Steinmann, P. (1996). On localization analysis in multisurface hyperelasto-plasticity. J. Mech. Phys. Solids 44: 1691–1713.

    Article  Google Scholar 

  • Tomita, Y. (1994). Simulation of plastic instabilities in solid mechanics. Appl. Mech. Rev. 47: no 6, part 1, 171–205.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Wien

About this paper

Cite this paper

Petryk, H. (2000). Theory of Material Instability in Incrementally Nonlinear Plasticity. In: Petryk, H. (eds) Material Instabilities in Elastic and Plastic Solids. CISM International Centre for Mechanical Sciences, vol 414. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2562-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2562-5_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83328-5

  • Online ISBN: 978-3-7091-2562-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics