Optimum Design of Tubular Structures

  • J. Farkas
Conference paper
Part of the International Centre for Mechanical Sciences book series (CISM, volume 394)


Compression steel circular and square hollow section (CHS and SHS) struts are optimized and compared to double-angle section ones showing the advantage of CHS and SHS struts (Section 6.2.1). It is shown that the optimum geometry of trusses depends on the shape of compression members (Section 6.2.2). Optimum design of tubular members with welded joints loaded in fatigue is treated in Section 6.3. Absorbed energy of CHS and SHS braces cyclically loaded in tension-compression is determined by closed formulae for hysteresis loop area (Section 6.4).

Compression aluminium-alloy CHS and SHS struts are optimized and it is shown that struts optimized considering the initial imperfections are practically safe and insensitive to imperfections (Section 6.5). CHS beams are optimized for bending in elastic and plastic range and stated that, in plastic range, it is more economic to design these beams without local buckling (Section 6.6). Minimum cost design of SHS Vierendeel trusses gives the optimum number of bays (Section 6.7). In the minimum cost design of a plate structure with rectangular hollow section (RHS) stiffeners the constraint on residual welding distortions is considered.


Tubular Structure Local Buckling Initial Imperfection Residual Welding Stress Fillet Weld 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 6.1
    Eurocode 3. 1992. Design of steel structures: Part 1. 1 Brussels, CEN European Committee for Standardization.Google Scholar
  2. 6.2
    Wardenier,J., Kurobane,Y. et al. 1991: Design guide for circular hollow section joints under predominantly static loading. Köln, TÜV Rheinland.Google Scholar
  3. 6.3
    Packer,J.A., J. Wardenier et al. 1992. Design guide for rectangular hollow section joints under predominantly static loading. Köln: TÜV Rheinland.Google Scholar
  4. 6.4
    Rondal,J., K-G. Würker et al. 1992. Structural stability of hollow sections. Köln: TÜV Rheinland:Google Scholar
  5. 6.5
    Farkas,J. 1990. Minimum cost design of tubular trusses considering buckling and fatigue constraints. Tubular Structures. Eds. Niemi,E. and P. Mäkeläinen. London-New York: Elsevier. 451–459.Google Scholar
  6. 6.6
    Hasegawa,A.,H. Abo et al. 1985. Optimum cross-sectional shapes of steel compression members with local buckling. Proc. JSCE Structural Engineering/ Earthquake Engineering 2: 121–129.Google Scholar
  7. 6.7
    Almar-Ness,A., P.J.Haagensen et al. 1984. Investigation of the Alexander L. Kielland failure–metallurgical and fracture analysis. J Energy Resources Technology Trans. ASME 106: 24–31.Google Scholar
  8. 6.
    Recommendations on fatigue of welded components IIW-Doc. XII-1539–95/XV-84595.Google Scholar
  9. 6.9
    Farkas,J. 1991. Fabrication aspects in the optimum design of welded structures. Struct. Optimization 3: 51–58.Google Scholar
  10. 6.10
    Gregor,V. 1989. The effect of surface preparation by TIG remelting on fatigue life. Zvfracské Spravy- Welding News 39: 60–65.Google Scholar
  11. 6.11
    Maeda,Y. and I. Okura 1983. Influence of initial deflection of plate girder webs on fatigue crack initiation. Eng. Struct. 5: 58–66.Google Scholar
  12. 6.12 Farkas,J. 1983. Optimum design of crane runway girders. Publ. Techn. Univ. Heavy Industry Miskolc Series C. 37: 233–246. Google Scholar
  13. 6.13
    Ingraffea,A.R., K.I.Mettam et al 1987. An analytical and experimental investigation into fatigue cracking in welded crane runway girders. Structural Failure, Product Liability and Technical Insurance. Proc. 2nd Internat. Conference University of Vienna 1986. Ed. Rossmanith,H.P. Inderscience Enterprises. pp. 201–223.Google Scholar
  14. 6.14
    Van Wingerde,A.M., J.A. Packer and J. Wardenier 1995. Criteria for the fatigue assessment of hollow structural connections. J. Construct. Steel Research 35: 71–115.CrossRefGoogle Scholar
  15. 6.15
    Popov,E.P. and Black,R.G. 1981. Steel struts under severe cyclic loadings. J.Struct.Div.Proc.ASCE, 107, 1857–1881.Google Scholar
  16. 6.16
    Lee,S.andGoel,S.C. 1987. Seismic behaviour of hollow and concrete filled square tubular bracing members. Research report UMCE 87–11. Department of Civil Eng., Univ. of Michigan, Ann Arbor.Google Scholar
  17. 6.17
    Zayas,V.A., Mahin,S.A and Popov,E.P. 1982. Ultimate strength of steel offshore structures. In: Behaviour of offshore structures, Proc. 3rd Int. Conference, Boston, Hemisphere Publ. Co,. Washington, Voi1. 2. 39–58.Google Scholar
  18. 6.18
    Jain,A.K., Goel,S.C. and Hanson,R,D. 1980. Hysteretic cycles of axially loaded steel members. J.Struct.Div.Proc.ASCE 106. 1777–1795.Google Scholar
  19. 6.19
    Liu,Zh. and Goel,S.C. 1988. Cyclic load behavior of concrete-filled tubular braces. J.Struct.Eng.ASCE 114, 1488–1506.Google Scholar
  20. 6.20
    Matsumoto,T., Yamashita,M. et al. 1987 Post-buckling behavior of circular tube brace under cyclic loadings. In: Safety Criteria in Design of Tubular Structures, Proc.Int.Meeting, Tokyo, 1986. Architectural Institute of Japan, 15–25.Google Scholar
  21. 6.21
    Nonaka,T. 1977. Approximation of yield condition for the hysteretic behavior of a bar under repeated axial loading. Intl Solids Struct. 13, 637–643.Google Scholar
  22. 6.22
    Ochi,K.,Yamashita,M. et al. 1990. Local buckling and hysteretic behavior of circular tubular members under axial loads. JStruct.Constr.Engng Alf No. 417. 53–61. (in Japanese).Google Scholar
  23. 6.23
    Papadrakakis,M. and Loukakis,K. 1987 Elastic-plastic hysteretic behavior of struts with imperfections. Eng. Struct.9, 162–170.Google Scholar
  24. 6.24
    Prathuangsit,D., Goel, S.C. and Hanson,R.D. 1978. Axial hysteresis behavior with end restraints. J. Struct.Div.Proc.ASCE, 104, 883–896.Google Scholar
  25. 6.25
    Shibata,M. 1982. Analysis of elastic-plastic behavior of a steel brace subjected to repeated axial force. Int.J. Solids Struct. 18, 217–228.CrossRefzbMATHGoogle Scholar
  26. 6.26
    Supple,W.J. and Collins,I. 1980. Post-critical behaviour of tubular struts. Eng.Struct. 2, 225–229.CrossRefGoogle Scholar
  27. 6.27
    Chen,W.F. and Sugimoto,H. 1987. Analysis of tubular beam-columns and frames under reversed loading. Eng. Struct. 9, 233–242.CrossRefGoogle Scholar
  28. 6.28
    Han,D.J. and Chen,W.F. 1983. Buckling and cyclic inelastic analysis of steel tubular beam-columns. Eng. Struct. 5, 119–132.CrossRefGoogle Scholar
  29. 6.29
    Shanley,F.R. 1960. Weight-strength analysis of aircraft structures. New York, Dover Publ.Google Scholar
  30. 6.30
    Gerard,G. 1962. Introduction to structural stability theory. New York etc. McGraw-Hill.Google Scholar
  31. 6.31
    Thompson,J.M.T. and Hunt,G.W. 1973. A general theory of elastic stability. London, etc. Wiley.zbMATHGoogle Scholar
  32. 6.32
    Tvergaard,V. 1973. Imperfection-sensitivity of a wide integrally stiffened panel under compression. International Journal of Solids and Structures 9: 177–192.CrossRefzbMATHGoogle Scholar
  33. 6.33
    Van der Neut,A. 1973. The sensitivity of thin-walled compression members to column axis imperfections. International Journal of Solids and Structures 9: 999–1011.Google Scholar
  34. 6.34
    Thompson,J.M.T. 1972. Optimization as a generator of structural instability. International Journal of Mechanical Sciences 14: 627–629.CrossRefGoogle Scholar
  35. 6.35
    Rondal,J. and Maquoi,R. 1981. On the optimal thinness of centrically compressed columns of SHS. Lecture Notes, Technical University of Budapest, Faculty of Civil Eng., Dept. of Mechanics.Google Scholar
  36. 6.36
    Gioncu,V. 1994. General theory of coupled instabilities. Thin-Walled Structures 19: 81–127.CrossRefGoogle Scholar
  37. 6.37
    British Standard 8118. Part 1. 1991. Structural use of aluminium.Google Scholar
  38. 6.38
    Farkas,J. 1992: Optimum design of circular hollow section beam-columns. In “Proceedings of the Second International Offshore and Polar Engineering Conference, San Francisco, 1992. ISOPE, Golden, Colorado, USA.”pp. 494–499.Google Scholar
  39. 6.39
    Chen,W.F. and Sohal, I.S. 1988. Cylindrical members in offshore structures. Thin-walled Structures 6, 153–285.CrossRefGoogle Scholar
  40. 6.40
    Martin,L.H.andPurkiss,J.A. 1992. Structural design of steelwork to BS 5950. London-Melbourne, Edward Arnold.Google Scholar
  41. 6.41
    Farkas,J.andJârmai,K. 1995. Fabrication cost calculations and minimum cost design of welded structural parts. Welding in the World 35: 400–406.Google Scholar
  42. 6.42
    COSTCOMP, 1990. Programm zur Berechnung der Schweisskosten. Deutscher Verlag für Schweisstechnik, DüsseldorfGoogle Scholar
  43. 6.43
    Farkas,J. 1991. Fabrication aspects in the optimum design of welded structures. Struct. Optimization 3: 51–58.CrossRefGoogle Scholar
  44. 6.44
    Farkas,J. 1974. Structural synthesis of press frames having columns and cross beams of welded box cross-section. Acta Techn.Hung. 79. No. 1–2. 191–201.Google Scholar
  45. 6.45
    Bodt,H.J.M. 1990. The global approach to welding costs. The Netherlands Institute of Welding.Google Scholar
  46. 6.46
    Farkas,J., Jâtmai,K. 1996a. Fabrication cost calculation and optimum design of welded steel silos. Welding in the World 37: No. 5. 225–232.Google Scholar
  47. 6.47
    Farkas,J., Jârmai,K. 1995. Fabrication cost calculations and minimum cost design of welded structural parts. Welding in the World 35: 400–406.Google Scholar
  48. 6.48
    Farkas,J., Jârmai,K. 1996b. Minimum cost design of SHS Vierendeel trusses. Tubular Structures VII. Proc. 7th Int. Symposium on Tubular Structures, Miskolc, 1996. Eds Farkas,J. and Jârmai,K. Balkema, Rotterdam-Brookfield, 463–468.Google Scholar
  49. 6.49
    Jârmai,K., Horikawa,K., Farkas,J. 1997. Economic design of steel bridge decks. 1TWDoc. XV-F-52–97, XV-951–97. San Francisco.Google Scholar
  50. 6.50
    Farkas,J., Jârmai,K. 1997a. Analysis and optimum design of metal structures. Balkema, Rotterdam-Brookfield.Google Scholar
  51. 6.51
    Farkas,J., Jârmai,K. 1997b. Analysis of some methods for reducing beam curvatures due to weld shrinkage. I1W-Doc. XV-944–97, X-1370–97, X/XV-RSDP-11–97. San Francisco.Google Scholar
  52. 6.52
    prEN 1029–2: 1992. Cold formed structural hollow sections of non-alloy and fine grain structural steels. Part 2. European Committee for Standardization, Brussels.Google Scholar
  53. 6.53
    DAST (Deutscher Ausschuss für Stahlbau) Richtlinie 016. 1986. Bemessung und konstruktive Gestaltung von Tragwerken aus dünnwandigen kaltgeformten Bauteilen. Köln.Google Scholar
  54. 6.54
    Okerblom, N.O., Demyantsevich,V.P., Baikova,I.P. 1963. Design of fabrication technology of welded structures. Leningrad, Sudpromgiz (in Russian).Google Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • J. Farkas
    • 1
  1. 1.University of MiskolcMiskolcHungary

Personalised recommendations