Skip to main content

Some Quasi-Analytic and Numerical Methods for Acoustical Imaging of Complex Media

  • Conference paper

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 398))

Abstract

The essential features of several rigorous and approximate methods for solving a large class of inverse acoustic wave scattering problems are presented herein. The rigorous (and near-rigorous) methods, which are very computer-intensive, involve solving linear (for the field) and non linear (for the boundary and composition parameters) boundary integral (BIE) and domain integral equations (DIE). The only way to reduce the computational volume, in order to obtain near real-time inversions, is by employing approximate models of the wave-medium interaction. Approximations appealing to complete family of functions representations, perturbation theory, heuristic arguments or asymptotic analysis, are described which often enable a closed-form expression for the scattered field to be obtained. This field ansatz is explicit in terms of the boundary and composition parameters. The latter are then determined from a set of equations that are usually non linear. When, however, the equations are linear, the inversion can be carried out by some sort of inverse (e.g., Fourier) transform. The multiplicity of solutions is demonstrated and the repercussions of model error (leading, for instance, to complex solutions for real parameters) are brought into evidence.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • J.D. Achenbach (ed.), EVALUATION OF MATERIALS AND STRUCTURES BY QUANTITATIVE ULTRASONICS, Springer, Vienna, 1993.

    Google Scholar 

  • K. Aki and P. Richards, QUANTITATIVE SEISMOLOGY, THEORY AND METHODS I, Freeman, San Francisco, 1980.

    Google Scholar 

  • T.S. Angell and R.E. Kleinman, Polarizability tensors in low frequency inverse scattering, Radio Sci., 22, 1120–1126, 1987.

    Article  Google Scholar 

  • T.S. Angell, R.E. Kleinman, B. Kok and G.F. Roach, A constructive method for identification of an impenetrable scatterer, Wave Motion, 11, 185–200, 1989.

    Article  Google Scholar 

  • T.S. Angell, R.E. Kleinman, B. Kok and G.F. Roach, Target reconstruction from scattered far field data, Ann.Télécomm., 44, 456–463, 1989.

    Google Scholar 

  • M. Bagieu et D. Maystre, Waterman and Rayleigh methods for diffraction problems: extension of the convergence domain, J.Opt.Soc. Am. A, 15, 1566–1576, 1998.

    Google Scholar 

  • G.A. Baker and P. Graves-Morris, PADE APPROXIMANTS, Cambridge Univ. Press, 1996.

    Google Scholar 

  • H. Begher and R.P. Gilbert, TRANSFORMATIONS, TRANSMUTATIONS, AND KERNEL FUNCTIONS, vol. 2, Pitman, London, 1994, pp. 97–107.

    Google Scholar 

  • A.J. Berkhout, SEISMIC MIGRATION. IMAGING OF ACOUSTIC ENERGY’ BY WAVE FIELD EXTRAPOLATION. A: THEORETICAL ASPECTS, Elsevier, New York, 1985.

    Google Scholar 

  • Y. Body and A. Wirgin, Etude théorique et numérique de problèmes de diffraction à trois dimensions, Ann.Télécomm., 32, 337–345, 1977.

    Google Scholar 

  • J.C. Bolomey and A. Wirgin, Numerical comparison of the Green’s function and the Waterman and Rayleigh theories of scattering from a cylinder with arbitrary cross-section, Proc.IEE, 121, 794–804, 1974.

    Google Scholar 

  • S. Bonnard, P. Vincent and M. Saillard, Cross-borehole inverse scattering using a boundary finite-element method, Inverse Probs., 14, 521–534, 1998.

    Article  Google Scholar 

  • M. Bonnet, BIE and material differentiation applied to the formulation of obstacle inverse problems, Engrg.Anal.Bound.Elem., 15, 121–136, 1995.

    Article  Google Scholar 

  • M.. Born and E. Wolf, PRINCIPLES OF OPTICS, Pergamon, London, 1959.

    Google Scholar 

  • E. Boschi and G. Ekstrom (eds.), SEISMIC MODELLING OF THE EARTH’S STRUCTURE, Ed. Compositori, Bologna, 1996.

    Google Scholar 

  • D. Brill, G.C. Gaunaurd and H. Überall, Mechanical eigenfrequencies of axisymmetric fluid objects: Acoustic spectroscopy, Acustica, 53, 11–18, 1983.

    Google Scholar 

  • O. Bruno and F. Reitich, Numerical solution of diffraction problems: a method of variation of boundaries. II. Finitely conducting gratings, Paoli approximants, and singularities, J.Opt.Soc. Am. A, 10, 2307–2316, 1993.

    Google Scholar 

  • A. Charalambopoulos and G. Dassios, Inverse scattering via low frequency moments, J.Math.Phys., 33, 4206–4216, 1992.

    Article  Google Scholar 

  • G. Chavent and P.C. Sabatier, INVERSE PROBLEMS OF WAVE PROPAGATION AND DIFFRACTION, Springer, Berlin, 1997.

    Google Scholar 

  • J.M. Chesneaux and A. Wirgin, Reflection from a corrugated surface revisited, J.Acoust.Soc.Am., 96, 1116–1129, 1994.

    Article  Google Scholar 

  • W.C. Chew, WAVES AND FIELDS IN INHOMOGENEOUS MEDIA, IEEE Press, New York, 1995.

    Google Scholar 

  • W.C. Chew, G.P. Otto, W.H. Weedon, J.H. Lin, C.C. Lu, Y.M. Wang and M. Moghaddam, Nonlinear diffraction tomography: the use of inverse scattering for imaging, IntI.J.Imag.Syst.Technol., 7, 16–24, 1996.

    Article  Google Scholar 

  • P. Chylek, V. Ramaswamy, A. Ashkin and J.M. Dziedzic, Simultaneous determination of refractive index and size of spherical dielectric particles from light scattering data, Appl.Opt., 22, 2302–2307, 1983.

    Article  Google Scholar 

  • R. Collins, W.D. Dover, J.R. Bowler and K. Miya. (eds.), NONDESTRUCTIVE TESTING OF MATERIALS, IOS, Oxford, 1995.

    Google Scholar 

  • D. Colton and R. Kress, INVERSE ACOUSTIC AND ELECTROMAGNETIC SCATTERING THEORY, Springer applied mathematical sciences N° 93, Berlin, 1992.

    Google Scholar 

  • G. Dassios, The inverse scattering problem for the soft ellipsoid, J.Math.Phys., 28, 2858–2862, 1987.

    Article  Google Scholar 

  • G. Dassios and R.J.Lucas, Inverse scattering for the penetrable ellipsoid and ellipsoidal boss, J.Acoust.Soc.Am. 99, 1877–1882, 1996.

    Article  Google Scholar 

  • A.K. Datta et S.C. Som, On the inverse scattering problem for dielectric cylindrical scatterers, IEEE Trans.Anten.Prop., 29, 392–397, 1981.

    Article  Google Scholar 

  • J.E. Dennis and R.B. Schnabel, NUMERICAL METHODS FOR UNCONSTRAINED OPTIMIZATION AND NONLINEAR EQUATIONS, Prentice-Hall, Englewood Cliffs, 1983.

    Google Scholar 

  • B. Duchêne and W. Tabbara, Characterization of a buried cylindrical object from its scattered field, IEEE Trans.Sonics Ultrason. 31, 658–663, 1984.

    Article  Google Scholar 

  • H.W. Eng1, M. Hanke and A. Neubauer, REGULARIZATION OF INVERSE PROBLEMS, Kluwer, Dordrecht, 1996.

    Google Scholar 

  • O.R. Gericke, Determination of the geometry of hidden defects by Ultrasonic pulse analysis testing, J.Acoust.Soc.Am., 35, 364–368, 1963.

    Google Scholar 

  • R.P. Gilbert, T. Scotti, A. Wirgin and Y.S. Xu, The unidentified object problem in a shallow ocean, J.Acoust.Soc.Am., 103, 1320–1327, 1998.

    Article  Google Scholar 

  • G.H. Golub and C.F. van Loan, MATRIX COMPUTATIONS, Johns Hopkins Univ.Press, Baltimore, 1989.

    Google Scholar 

  • O.S. Haddadin and E.S. Ebbini, Multiple frequency distorted Born iterative method for tomographic imaging, in ACOUSTICAL IMAGING, VOL.23, S. Lees and L.A. Ferrari, eds., Plenum, New York, 1997.

    Google Scholar 

  • R.F. Harrington, FIELD COMPUTATION BY MOMENT METHODS, Mac Milian, New York, 1968.

    Google Scholar 

  • J.P. Hugonin, N. Joachimowicz et C. Pichot, Quantitative reconstruction of complex permittivity distributions by means of microwave tomography, dans INVERSE METHODS IN ACTION, P.C. Sabatier (ed.), Springer, Berlin, 1990, pp. 302–310.

    Book  Google Scholar 

  • W.A. Imbriale and R. Mittra, The two-dimensional inverse scattering problem, IEEE Trans.Anten.Prop., AP-18, 633–642, 1970.

    Google Scholar 

  • H.M. Iyer and K. Hirahara (eds.), SEISMIC TOMOGRAPHY, Prentice-Hall, London, 1993.

    Google Scholar 

  • H. Kawabe, The two dimensional inverse acoustic scattering for shape identification, in INVERSE PROBLEMS IN ENGINEERING MECHANICS, H.D. Bui and H. Tanaka (eds.), Balkema, Rotterdam, 1994, pp. 33–39.

    Google Scholar 

  • R.E. Kleinman and P.M. van den Berg, Two-dimensional location and shape reconstruction, Radio Sci., 29, 1157–1169, 1994.

    Google Scholar 

  • M. Lambert, R. de Oliveira Bohbot and D. Lesselier, Born-type schemes for the acoustic probing of 1-D fluid media from time-harmonic planar reflection coefficients at two incidences, J.Acoust.Soc.Am., 99, 243–253, 1996.

    Article  Google Scholar 

  • K.J. Langenberg, P. Fellinger, R. Marklein, P. Zanger, K. Mayer and T. Kreutter, Inverse methods and imaging, in, EVALUATION OF MATERIALS AND STRUCTURES BY QUANTITATIVE ULTRASONICS, J.D. Achenbach (ed.), Springer, Vienna, 1993.

    Google Scholar 

  • D. Lesselier et B. Duchêne, Wave field inversion of objects in stratified environments: from back-propagation schemes to full solutions, in REVIEW OF RADIO SCIENCE 1993–1996, W. Ross Stone, ed., URSI, Oxford Univ.Press, Oxford, 1996, pp. 235–268.

    Google Scholar 

  • D. Lesselier et W. Tabbara, Probing one-dimensional inhomogeneous media: how can it be done ?, in ELECTROMAGNETIC AND ACOUSTIC SCA 1 [BRING: DETECTION AND INVERSE PROBLEMS, C. Bourrely, P. Chiappetta et B. Toressani (eds.), World Scientific, Singapore, 1989, pp. 303–316.

    Google Scholar 

  • S. Mensah and J.-P. Lefebvre, Enhanced compressibility tomography, IEEE Trans. Ultrason. Ferroelec. Freq.Control, 44, 1245–1252, 1997.

    Article  Google Scholar 

  • R.F. Millar, The Rayleigh hypothesis and a related least-squares solution to scattering problems for periodic surfaces and other scatterers, Radio Sci., 8, 785–796, 1973.

    Google Scholar 

  • J.J. Moré, B.S. Garbow and K.E. Hillstrom, User Guide for Minpack-1, Argonne Natl.Lab. Rept. ANL-80–74, 1980.

    Google Scholar 

  • P.M. Morse and H. Feshbach, METHODS OF THEORETICAL PHYSICS, McGraw-Hill, New York, 1953.

    Google Scholar 

  • R.K. Mueller, M. Kaveh and G. Wade, Reconstructive tomography and applications to ultrasonics, Proc.IEEE, 67, 567–587, 1979.

    Article  Google Scholar 

  • L. Päivärinta and E. Somersalo, eds., INVERSE PROBLEMS IN MATHEMATICAL PHYSICS, Springer, Berlin„ 1993.

    Google Scholar 

  • A.G. Ramm, MULTIDIMENSIONAL INVERSE SCATTERING PROBLEMS, Longman, Harlow, 1992.

    Google Scholar 

  • J.H. Richmond, Scattering by a dielectric cylinder of arbitrary cross section shape, IEEE Trans.Anten.Prop., 13, 334–341, 1965.

    Article  Google Scholar 

  • J. Ripoche, G. Maze, J.L. Izbicki, New research in nondestructive testing: Acoustic Resonance Spectroscopy, in PROC. 15TH ULTRASONICS INTL. CONF., London, 1985, pp. 364–370.

    Google Scholar 

  • B.A. Roberts and A.C. Kak, Reflection mode diffraction tomography, Ultrason.Imaging, 7, 300–320, 1985.

    Google Scholar 

  • E.A. Robinson, Image reconstruction in exploration geophysics, IEEE Trans.Sonics Ultrason., 31, 259–270, 1984.

    Google Scholar 

  • D.N.G. Roy, L. Couchman and J. Warner, Scattering and inverse scattering of sound-hard obstacles via shape deformation, Inverse Probs. 13, 585–606, 1997.

    Article  Google Scholar 

  • P.C. Sabatier, ed., SOME TOPICS ON INVERSE PROBLEMS, World Scientific, Singapore, 1988. P.C. Sabatier, INVERSE METHODS IN ACTION, Springer, Berlin, 1990.

    Google Scholar 

  • T. Scotti, Localisation et reconstruction des caractéristiques géométriques et physiques d’un objet à l’aide du champ acoustique diffusé, Doctoral thesis, Université de la Méditerranée, Marseille, 1997.

    Google Scholar 

  • W. Sachse, Ultrasonic spectroscopy of a fluid-filled cavity in an elastic solid, J.Acoust.Soc.Am., 56, 891–896, 1974.

    Google Scholar 

  • T. Scotti and A. Wirgin, Shape reconstruction using diffracted waves and canonical solutions, Inverse Probs. 11, 1097–1111, 1995.

    Article  Google Scholar 

  • T. Scotti and A. Wirgin, Shape reconstruction of an impenetrable scattering body via the Rayleigh hypothesis, Inverse Probs. 12, 1027–1055, 1996.

    Article  Google Scholar 

  • T. Scotti and A. Wirgin, Localisation and shape reconstruction of a hidden object contained within another object from measurements of the scattered acoustic field, in ACTES DU 4ÈME CONGRÈS FRANÇAIS D’ACOUSTIQUE, SFAITEKNEA, Toulouse, 1997, pp. 813–816.

    Google Scholar 

  • R. Snieder, The role of nonlinearity in inverse problems, Inverse Probs., 14, 387–404, 1998.

    Google Scholar 

  • A. Tarantola, INVERSE PROBLEM THEORY: METHODS FOR DATA FITTING AND MODEL PARAMETER ESTIMATION, Elsevier, Amsterdam, 1987.

    Google Scholar 

  • A.N. Tikhonov and V.Y. Arsenin, SOLUTIONS OF ILL-POSED PROBLEMS, Wiley, New York, 1977.

    Google Scholar 

  • W. Tobocman, Comparison of the T-matrix and Helmholtz integral equation methods for wave scattering calculations, J.Acoust.Soc.Am., 77, 369–374, 1985.

    Google Scholar 

  • W. Tobocman, Inverse acoustic wave scattering in two dimensions from impenetrable targets, Inverse Probs., 5, 1131–1144, 1989.

    Google Scholar 

  • S. Twomey, INTRODUCTION TO THE MATHEMATICS OF INVERSION IN REMOTE SENSING AND INDIRECT MEASUREMENTS, Elsevier, Amsterdam, 1977.

    Google Scholar 

  • P.M. van den Berg, M.G. Coté and R.E. Kleinman, Determination of the shape of an unknown perfectly conducting object from experimental scattered field data, Rept. 94–10 of the Center for the Mathematics of Waves, University of Delaware, 1994.

    Google Scholar 

  • P.M. van den Berg and J.T. Fokkema, The Rayleigh hypothesis in the theory of diffraction by a cylindrical obstacle, IEEE Trans.Anten.Prop., 27, 577–583, 1979.

    Article  Google Scholar 

  • A. Wirgin, Application de la méthode des ondes planes à l’étude des problèmes direct et inverse de diffraction d’ondes sur des surfaces molles comportant un relief non périodique, C.R.Acad.Sci.Paris II 294, 17–19, 1982.

    Google Scholar 

  • A. Wirgin, Determination of the profile of a hard or soft grating from the scattered field, in IEEE ULTRASONICS SYMPOSIUM PROCEEDINGS, M. Levy (ed.), IEEE/UFFC, New York, 1994, pp. 1189–1193.

    Google Scholar 

  • A. Wirgin and T. Scotti, Wide-band approximation of the sound field scattered by an impenetrable body of arbitrary shape, J.Sound Vibr., 194, 537–572, 1996.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Wien

About this paper

Cite this paper

Wirgin, A. (1999). Some Quasi-Analytic and Numerical Methods for Acoustical Imaging of Complex Media. In: Wirgin, A. (eds) Wavefield Inversion. International Centre for Mechanical Sciences, vol 398. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2486-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2486-4_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83320-9

  • Online ISBN: 978-3-7091-2486-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics