Skip to main content

Introduction to Fatigue Analysis in Mechanical Design by the Multiscale Approach

  • Conference paper
High-Cycle Metal Fatigue

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 392))

Abstract

Crack initiation under high cycle fatigue is a localized phenomenon that occurs in some highly stressed grains of the metallic material. Therefore, the study of high cycle fatigue problems in a rational way is best performed by the introduction of the mesoscopic scale of material description (i.e. the scale of the metal grains of a metallic aggregate) in addition to the usual macroscopic scale of continuum mechanics. The principles of such a multiscale approach in high-cycle fatigue of metallic structures are presented in this work. The multiscale approach is settled on the assumption that under high-cycle fatigue loading a structure will not be fractured by fatigue if an elastic shakedown state is reached at the macroscopic as well as at the mesoscopic scale. The concept of the fatigue limit criterion coincides thus with the possibility of a cyclically loaded structure to tend to an elastic shakedown state at all scales. Extensions of Melan’s elastic shakedown theorem to realistic material behaviour are discussed in this article. These theorems allow an easy estimation of the mechanical parameters at the elastic shakedown state at both the macroscopic and mesoscopic scales. Some examples of application of the extended Melan’s theorem are provided. The relationships between mesoscopic and macroscopic quantities are studied within the framework of undamaged as well as damaged materials. In the case of undamaged materials, some additional assumptions allow to link the mesoscopic quantities to the usual (macroscopic) stresses and strains through closed form relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kitagawa, H. and Takahashi, S., (1976), Applicability of Fracture Mechanics to very Small Cracks or Cracks in the Early Stage, Proc. 2nd Int. Conf Mech. Behav. of Materials, (ICM2), Boston, Mass., 627–631.

    Google Scholar 

  2. McDowell D. L., (1996), Basic Issues in the Mechanics of High Cycle Metal Fatigue, Int. J. of Fracture, Vol. 80, 103–145,

    Article  Google Scholar 

  3. Bui H.D., (1969), Etude de l’Evolution de la Frontière du Domaine Elastique avec Ecrouissage et Relations de Comportement Elastoplastique des Métaux Cubiques, Thèse de Doctorat ès Sciences Physiques, Paris.

    Google Scholar 

  4. Bui H.D., Dang Van K., Stolz C., (1982), Relations entre Grandeurs Microscopiques et Macroscopiques, C.R. Acad. Sci. Paris, tome 292, série II, 1155–1158.

    Google Scholar 

  5. Stolz C., (1996), Large Deformation of Polycrystals, in Large Plastic Deformation of Crystalline Aggregates, C. Teodosiu ed., CISM, Springer-Verlag.

    Google Scholar 

  6. Chaboche J.L., Cordier G., Dang Van K., (1979), Modelization of the Strain Memory Effect on the Cyclic Hardening of 316 Stainless Steel, Proc. of 5th Structural Mech. in Reactor Technology (SMIRT 5), Berlin.

    Google Scholar 

  7. Halphen B., (1978), Problèmes Quasistatiques en Viscoplasticité, Thèse de Doctorat es Sciences Mathématiques, Université Pierre et Marie Curie, Paris.

    Google Scholar 

  8. Bower A.F., (1989), Cyclic Hardening Properties of Hard Drawn Copper and Rail Steel, J., Mech Phys. Solids, Vol. 37, 455–470.

    Article  Google Scholar 

  9. Bower A.F., Johnson K.L., (1989), The Influence of Strain Hardening on Cumulative Plastic Deformation in Rolling and Sliding Line Contact, J. Mech Phys. Solids, Vol. 37, 471.493.

    Google Scholar 

  10. Mandel J., Halphen B. Zarka J., (1977), Adaptation d’une Structure Elastoplastique à Ecrouissage Cinématique, Mech. Res. Comm. , 4, 309–314.

    Article  MATH  Google Scholar 

  11. Garud Y. S. Multiaxial Fatigue: A Survey of the State of the Art, J. Testing Evaluation, Vol. 9, 165–178.

    Google Scholar 

  12. Orowan E., (1939), Theory of the Fatigue of Metals, Proc. Roy. Soc, London, A, Vol. 171, 79–106.

    Article  MATH  Google Scholar 

  13. Dang Van K., (1973), Sur la Résistance à la Fatigue des Métaux, Sciences et Techniques de l’Armement, Mémorial de l’Artillerie Française, 3ème fascicule, Paris.

    Google Scholar 

  14. Dang Van K., Griveau B., Message O., (1989), On a New Multiaxial Fatigue Limit Criterion: Theory and Application, Biaxial and Multiaxial Fatigue, EGF3 (Edited by M. W. Brown and K.J. Miller) Mechanical Engineering Publication, London, 479–496.

    Google Scholar 

  15. Dang Van K., (1993), Macro-Micro Approach in High Cycle Fatigue, Advances in Multiaxial Fatigue, ASTM STP 1191, D. L. McDowell and R. Ellis, Eds., American Society for Testing and Materials, Philadelphia, 120–130.

    Google Scholar 

  16. Papadopoulos I.V., (1987), Fatigue Polycyclique des Métaux: Une nouvelle Approche, Thèse de Doctorat, Ecole Nationale des Ponts et Chaussées, Paris.

    Google Scholar 

  17. Papadopoulos I.V., (1996), Exploring the high-cycle fatigue behaviour of metals from the mesoscopic scale, J. Mech. Behavior Mater., Vol. 6, 93–118.

    Article  Google Scholar 

  18. Papadopoulos I.V., (1995), A high-cycle fatigue criterion applied in biaxial and triaxial out-of-phase stress conditions, Fatigue Fract. Engng Mater. Struct., Vol. 18, 79–91.

    Article  Google Scholar 

  19. Papadopoulos I.V., (1994), A new criterion of fatigue strength for out-of-phase bending and torsion of hard metals, Int. J. Fatigue, Vol. 16, 377–384.

    Article  Google Scholar 

  20. Papadopoulos I.V., Davoli P., Gorla C., Filippini M. and Bernasconi A., (1997), A comparative study of multiaxial high-cycle fatigue criteria for metals, Int. J. Fatigue, Vol. 19, 219–235.

    Article  Google Scholar 

  21. Ballard P., Dang Van K., Deperrois A. and Papadopoulos LV., (1995), High Cycle Fatigue and Finite Element Analysis, Fatigue Fract. Engng. Mater. Struct., Vol. 18, 397–411.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Wien

About this paper

Cite this paper

Van, K.D. (1999). Introduction to Fatigue Analysis in Mechanical Design by the Multiscale Approach. In: Van, K.D., Papadopoulos, I.V. (eds) High-Cycle Metal Fatigue. International Centre for Mechanical Sciences, vol 392. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2474-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2474-1_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83144-1

  • Online ISBN: 978-3-7091-2474-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics