The Static-Geometric Analogy in the Equations of Thin Shell Structures

  • C. R. Calladine
Part of the International Centre for Mechanical Sciences book series (CISM, volume 240)


The ‘static-geometric analogy’ in thin shell structures is a formal correspondence between equilibrium equations on the one hand and geometric compatibility equations on the other. It is well known as a fact, but no satisfactory explanation of its basis has been given. The paper gives an explanation for the analogy, within the framework of shallow-shell theory. The explanation is facilitated by two innovations: (i) separation of the shell surface conceptually into separate stretching (S) and bending (B) surfaces; (ii) use of change of Gaussian curvature as a prime variable. Various limitations of the analogy are pointed out, and a scheme for numerical calculation which embodies the most useful features of the analogy is outlined.


Equilibrium Equation Gaussian Curvature Virtual Work Shell Theory Interface Shear Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Aleksandrov, A.D. and Zalgaller, V.A. Intrinsic geometry of surfaces (transi, by J.J. Danskin) (Providence: American Mathematical Society, 1967).zbMATHGoogle Scholar
  2. (2).
    Budiansky, B. and Sanders, J.L. On the ‘best’ first-order linear shell theory. In Progress in applied mechanics; the Prager anniversary volume, pp. 129–140. (New York: Macmillan, 1963).Google Scholar
  3. (3).
    Calladine, C.R. Creep in torispherical pressure vessel heads. In Creep in structures: Proc. IUTAM Symposium, Gothenburg, pp. 247–268. (Berlin: Springer-Verlag, 1972).Google Scholar
  4. (4).
    Calladine C.R, Structural consequences of small imperfections in elastic thin shells of revolution. Int. J. Solids Structures 8 (1972), 679–697.CrossRefzbMATHGoogle Scholar
  5. (5).
    Calladine, C.R. Thin-walled elastic shells and analysed by a Rayleigh method. Int. J. Solids Structures 13(1977), 515–530.MathSciNetCrossRefzbMATHGoogle Scholar
  6. (6).
    Caspar, D.L.D. and Klug, A. Physical principles in the construction of regular viruses. Cold Spring Harbour Symposia on Quantitative Biology 27 (1962), 1–24.CrossRefGoogle Scholar
  7. (7).
    Chernyshev, G.N. On the action of concentrated forces and moments on an elastic thin shell of arbitrary shape. J. Appl. Math. Mech. (Prikl. Mat. Mekh.) 27 (1963), 172–184.MathSciNetCrossRefzbMATHGoogle Scholar
  8. (8).
    Collins, I.F. On an analogy between plane strain and plate bending solutions in rigid/perfect plasticity theory. Int. J. Solids Structures 7 (1971), 1057–1073.CrossRefGoogle Scholar
  9. (9).
    Donnell, L.H. Stability of thin-walled tubes under torsion. National Advisory Committee for Aeronautics, report 497 (Washington, 1933).Google Scholar
  10. (10).
    Flügge, W. Statik und Dynamik der Schalen, 3rd ed., pp. 202–204 (Berlin: Springer-Verlag, 1962).CrossRefzbMATHGoogle Scholar
  11. (11).
    Flügge, W. Stresses in Shells, 2nd ed., pp. 414–422 (Berlin: Springer-Verlag, 1973).CrossRefzbMATHGoogle Scholar
  12. (12).
    Flügge, W. and Elling, R.E. Singular solutions for shallow sheUs. Int. J. Solids Structures 8 (1972), 227–247.CrossRefzbMATHGoogle Scholar
  13. (13).
    Gauss, K.F. General investigation of curved surfaces (in Latin) (transi, by J.C. Morehead, and A.M. Hiltebeitel), (Hewlett, New York: Raven Press, 1965).Google Scholar
  14. (14).
    Hilbert, D. and Cohn-Vossen, S. Geometry and the imagination, pp. 193–204 (New York: Chelsea Publ. Co., 1952).zbMATHGoogle Scholar
  15. (15).
    Goldenweiser, A.L. Equations of the theory of thin shells (in Russian). Prikl. Mat. Mekh. 4 (1940), 35–42.zbMATHGoogle Scholar
  16. (16).
    Goldenweiser A.L. Theory of elastic thin shells ;transl. ed. A. Herrmann), pp. 92–96 (Ox ford, Pergamon for A.S.M.E., 1961).Google Scholar
  17. (17).
    Johnson, W. Upper bounds to the load for the transverse bending of flat rigid-perfectly plastic plates. Part 2. An analogy: slip-line fields for analysing the bending and torsion of plates. Int. J. Mech. Sci. 11 (1969), 913–938.CrossRefGoogle Scholar
  18. (18).
    Koiter, W.T. The effect of axisymmetric imperfections on the buckling of cylindrical shells under axial compression. Proc. Kon. Ned. Acad. Wet. (B) 66 (1963), 265–279.zbMATHGoogle Scholar
  19. (19).
    Koiter, W.T. On the nonlinear theory of thin elastic shells. Proc. Kon. Ned. Acad. Wet. (B) 69 (1966), 1–54.MathSciNetGoogle Scholar
  20. (20).
    Lur’e, A.I. General theory of elastic shells (in Russian). Prikl. Mat. Mekh. 4 (1940), 7–34.zbMATHGoogle Scholar
  21. (21).
    Lur’e, A.I. On the static geometric analogue of shell theory. In Problems of continuum mechanics; the Muskhelisvili anniversary volume, pp. 267–274 (Philadelphia: Society for Industrial and Applied Mathematics, 1961).Google Scholar
  22. (22).
    Marguerre, K. Zur Theorie der gekrümmten Platte grosser Formänderung. Proc. 5th Intern. Cong. Appl. Mech., Cambridge, Mass. IUTAM (1939), 93–101.Google Scholar
  23. (23).
    Maxwell, J.C., On the transformation of surfaces by bending. Trans. Cambridge Philos. Soc. 9 (1856), 445–470.Google Scholar
  24. (24).
    Naghdi, P.M. The theory of shells and plates. Handbuck der Physik, Band VIa/2, pp. 425–640 (esp. p. 613) (Berlin: Springer-Verlag, 1972).MathSciNetGoogle Scholar
  25. (25).
    Novozhilov, V.V. The theory of thin shells (transi. P.G. Lowe, ed. J.R.M. Radok) (Groningen: P. Noordhoff, 1959).zbMATHGoogle Scholar
  26. (26).
    Reissner, E. Stresses and small displacements of shallow shells, II. J. Math. Phys. 25 (1946), 279–300.Google Scholar
  27. (27).
    Sanders, J.L. An improved first-approximation theory for thin shells. National Aeronautics and Space Administration Technical Report R24 (Washington, 1959).Google Scholar
  28. (28).
    Sanders, J.L. Singular solutions to the shallow shell equations. J. Appl. Mech. 37 (1970), 361–364.CrossRefzbMATHGoogle Scholar
  29. (29).
    Sanders, J.L. and Simmonds, J.G. Concentrated forces on shallow cylindrical shells .J. Appl. Mech. 37 (1970), 367–373.CrossRefzbMATHGoogle Scholar
  30. (30).
    Terzaghi, K. Theoretical soil mechanics, pp. 11–15 (New York: Wiley, 1943).CrossRefGoogle Scholar
  31. (31).
    Timoshenko, S.P. and Goodier, J.N. Theory’ of elasticity, 2nd ed., pp. 24, 26–27 (New York: McGraw-Hill, 1951).zbMATHGoogle Scholar
  32. (32).
    Timoshenko, S.P. and Woinowsky-Krieger, S.Theory of plates and shells, 2nd ed. (New York: McGraw-Hill, 1959).Google Scholar

Copyright information

© Springer-Verlag Wien 1980

Authors and Affiliations

  • C. R. Calladine
    • 1
  1. 1.University of CambridgeUK

Personalised recommendations