Kinetics of Tryptophan Transport Into the Brain

  • T. L. Sourkes
Conference paper
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 15)


Tryptophan is transported into the brain by a complex system, experimental and kinetic analysis of which favours a carrier mechanism functioning in association with diffusion (3-parameter model), as distinct from a system comprising two carriers (4-parameter model). The Lineweaver-Burk method is limited as a means of distinguishing between these alternative models. A statistical (linearization) technique represents an improvement over the graphical method in providing the best estimates of the parameters, as well as a measure of the variance (error mean square) of each fit to the data. However, even with this a distinction between alternative models ultimately depends upon analysis of a variety of kinetic experiments.


Introduce Computer Programme High Affinity Transport System Tryptophan Uptake Tryptophan Transport Neuroblastoma Clone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Archer, E. G., Breakfield, X. O., Sharata, M. N.: Transport of tyrosine, phenylalanine, tryptophan and glycine in neuroblastoma clones. J. Neurochem. 28, 127–135 (1977).PubMedCrossRefGoogle Scholar
  2. Atkins, G. L., Gardner, M. L. G.: The computation of saturatable and linear components of intestinal and other transport kinetics. Biochim. Biophys. Acta 468, 127–145 (1977).PubMedCrossRefGoogle Scholar
  3. Atkins, G. L., Nimmo, I. A.: A comparison of seven methods for fitting the Michaelis-Menten equation. Biochem. J. 149, 775–777 (1975).PubMedGoogle Scholar
  4. Baños, G., Daniel, P. M., Moorhouse, S. R., Pratt, O. E.: The influx of amino acids into the brain of the rat in vivo: the essential compared with some non-essential amino acids. Proc. Roy. Soc. London 183, 59–70 (1973).CrossRefGoogle Scholar
  5. Barbosa, E., Joanny, P., Corriol, J.: Accumulation active du tryptophane dans le cortex cerebral isolé du rat. C.R. Séances Soc. Biol. Paris 164, 345–350 (1970).Google Scholar
  6. Bauman, A., Bourgoin, S., Benda, P., Glowinski, J., Hamon, M.: Characteristics of tryptophan accumulation by glial cells. Brain Res. 66, 253 to 263 (1974).CrossRefGoogle Scholar
  7. Belin, M. F., Chouvet, G., Pujol, J. F.: Transport synaptosomal du tryptophane et de la tyrosine cérébrale. Stimulation de la vitesse de capture après reserpine ou inhibition de la monoamine oxydase. Biochem. Pharmacol. 23, 587–596 (1974).Google Scholar
  8. Belin, M. F., Pujol, J. F.: Transport synaptosomal du tryptophane et de la tyrosine cérébrale. Existence de systèmes de capture d’affinité différente. Experientia (Basel) 29, 411–413 (1973).CrossRefGoogle Scholar
  9. Denizeau, F., Sourkes, T. L.: Regional transport of tryptophan in rat brain. J. Neurochem. 28, 951–959 (1977).PubMedCrossRefGoogle Scholar
  10. Denizeau, F., Wyse, J., Sourkes, T. L.: Kinetics of multiple transport systems for amino acids in the brain. J. Theor. Biol. 63, 99–110 (1976).PubMedCrossRefGoogle Scholar
  11. Eisenthal, R., Cornish-Bowden, A.: The direct linear plot, a new graphical procedure for estimating enzyme kinetic parameters. Biochem. J. 139, 715–720 (1974).PubMedGoogle Scholar
  12. Joanny, P., Barbosa, E., Corriol, J.: Accumulation active de quelques acides aminés dans les coupes de cerveau du rat. J. Physiol. (Paris), Suppl. 60, 265 (1968).Google Scholar
  13. Kiely, M., Sourkes, T. L.: Transport of L-tryptophan into slices of rat cerebral cortex. J. Neurochem. 19, 2863–2872 (1972).PubMedCrossRefGoogle Scholar
  14. Knapp, S., Mandell, A. J.: Narcotic drugs: effects on the serotonin biosynthetic systems of the brain. Science (Washington) 177, 1209–1211 (1972).CrossRefGoogle Scholar
  15. Lajtha, A.: Amino acid transport in the brain in vivo and in vitro. In: Aromatic Amino Acids in the Brain, Ciba Found. Symp. 22 (new series) (Wolstenholme, G. E. W., Fitzsimons, D. W., eds.), pp. 25–49. Amsterdam: Elsevier. 1974.Google Scholar
  16. Lineweaver, H., Burk, D.: The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56, 658–666 (1934).CrossRefGoogle Scholar
  17. Lorenzo, A. V.: Amino acid transport mechanisms of the cerebrospinal fluid. Fed. Proceedings Fed. Amer. Soc. Exp. Biol. 33, 2079–2085 (1974).Google Scholar
  18. Mandell, A. J., Knapp, S.: Regulation of serotonin biosynthesis in brain: role of the high affinity uptake of tryptophan into serotonergic neurons. Fed. Proceedings Fed. Amer. Soc. Exp. Biol. 36, 2142–2148 (1977).Google Scholar
  19. Pardridge, W. M., Oldendorf, W. H.: Transport of metabolic substances through the blood-brain barrier. J. Neurochem. 28, 5–12 (1977).PubMedCrossRefGoogle Scholar
  20. Seta, K., Sansur, M., Lajtha, A.: The rate of incorporation of amino acids into brain proteins during infusion in the rat. Biochim. Biophys. Acta 294, 472–480 (1973).PubMedCrossRefGoogle Scholar
  21. Vahvelainen, M. L., Oja, S. S.: Kinetics of influx of phenylalanine, tyrosine, tryptophan, histidine and leucine into slices of brain cortex from adult and 7-day-old rats. Brain Res. 40, 477–488 (1972).PubMedCrossRefGoogle Scholar
  22. Westley, J., Taylor, H.: Distinction among formal mechanisms that yield double reciprocal plots concave from below. J. Biol. Chem. 249, 7148 to 7150 (1974).PubMedGoogle Scholar
  23. Young, S. N., Sourkes, T. L.: Tryptophan in the central nervous system: regulation and significance. Adv. Neurochem. 2, 133–191 (1977).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1979

Authors and Affiliations

  • T. L. Sourkes
    • 1
  1. 1.Departments of Psychiatry and Biochemistry, Faculty of MedicineMcGill UniversityMontrealCanada

Personalised recommendations