Microtubule Organization in Mitotic Cells

  • Sylvain Meunier
  • Isabelle VernosEmail author


Mitosis, the process by which one cell divides into two genetically identical daughter cells, is the most basic process for the development and proliferation of living organisms. In eukaryotes, mitosis involves the transient organization of a sophisticated molecular machine, the bipolar spindle that orchestrates the segregation of the genetic material to the daughter cells. The spindle is a microtubule (MT)-based apparatus whose assembly and function rely on the fine modulation of MT intrinsic dynamic properties and on their spatial and temporal organization. In this chapter, we will focus on the mechanisms of spindle assembly and dynamics. We will discuss some current questions in the field and review the consequences of defective MT function in mitotic cells for human health.


Spindle Pole Spindle Assembly Bipolar Spindle Central Spindle Bipolar Spindle Assembly 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We apologize to all scientists whose primary work could not be cited due to space limitations. We thank all members of the Vernos lab for helpful comments and critical reading of this manuscript.


  1. Akhmanova A, Steinmetz MO (2010) Microtubule + TIPs at a glance. J Cell Sci 123(Pt 20):3415–3419. doi:123/20/3415 [pii]  10.1242/jcs.062414 PubMedCrossRefGoogle Scholar
  2. Alushin GM, Lander GC, Kellogg EH, Zhang R, Baker D, Nogales E (2014) High-resolution microtubule structures reveal the structural transitions in alphabeta-tubulin upon GTP hydrolysis. Cell 157(5):1117–1129. doi:S0092-8674(14)00483-8 [pii]  10.1016/j.cell.2014.03.053 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Antonio C, Ferby I, Wilhelm H, Jones M, Karsenti E, Nebreda AR, Vernos I (2000) Xkid, a chromokinesin required for chromosome alignment on the metaphase plate. Cell 102(4):425–435. doi:S0092-8674(00)00048-9 [pii]PubMedCrossRefGoogle Scholar
  4. Asteriti IA, Rensen WM, Lindon C, Lavia P, Guarguaglini G (2010) The Aurora-A/TPX2 complex: a novel oncogenic holoenzyme? Biochim Biophys Acta 1806(2):230–239. doi:S0304-419X(10)00058-2 [pii]  10.1016/j.bbcan.2010.08.001 PubMedGoogle Scholar
  5. Barisic M, Silva e Sousa R, Tripathy SK, Magiera MM, Zaytsev AV, Pereira AL, Janke C, Grishchuk EL, Maiato H (2015) Mitosis. Microtubule detyrosination guides chromosomes during mitosis. Science 348(6236):799–803. doi:science.aaa5175 [pii]  10.1126/science.aaa5175 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bayliss R, Sardon T, Vernos I, Conti E (2003) Structural basis of Aurora-A activation by TPX2 at the mitotic spindle. Mol Cell 12(4):851–862. doi:S1097276503003927 [pii]PubMedCrossRefGoogle Scholar
  7. Belmont LD, Mitchison TJ (1996) Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules. Cell 84(4):623–631. doi:S0092-8674(00)81037-5 [pii]PubMedCrossRefGoogle Scholar
  8. Bettencourt-Dias M (2013) Q&A: who needs a centrosome? BMC Biol 11:28. doi:1741-7007-11-28 [pii]  10.1186/1741-7007-11-28 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bettencourt-Dias M, Glover DM (2007) Centrosome biogenesis and function: centrosomics brings new understanding. Nat Rev Mol Cell Biol 8(6):451–463. doi:nrm2180 [pii]  10.1038/nrm2180 PubMedCrossRefGoogle Scholar
  10. Bieling P, Telley IA, Surrey T (2010) A minimal midzone protein module controls formation and length of antiparallel microtubule overlaps. Cell 142(3):420–432. doi:S0092-8674(10)00723-3 [pii]  10.1016/j.cell.2010.06.033 PubMedCrossRefGoogle Scholar
  11. Booth DG, Hood FE, Prior IA, Royle SJ (2011) A TACC3/ch-TOG/clathrin complex stabilises kinetochore fibres by inter-microtubule bridging. EMBO J 30(5):906–919. doi:emboj201115 [pii]  10.1038/emboj.2011.15 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Brouhard GJ, Stear JH, Noetzel TL, Al-Bassam J, Kinoshita K, Harrison SC, Howard J, Hyman AA (2008) XMAP215 is a processive microtubule polymerase. Cell 132(1):79–88. doi:S0092-8674(07)01547-4 [pii]  10.1016/j.cell.2007.11.043 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Cai S, Weaver LN, Ems-McClung SC, Walczak CE (2009) Kinesin-14 family proteins HSET/XCTK2 control spindle length by cross-linking and sliding microtubules. Mol Biol Cell 20(5):1348–1359. doi:E08-09-0971 [pii]  10.1091/mbc.E08-09-0971 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Carazo-Salas RE, Gruss OJ, Mattaj IW, Karsenti E (2001) Ran-GTP coordinates regulation of microtubule nucleation and dynamics during mitotic-spindle assembly. Nat Cell Biol 3(3):228–234. doi: 10.1038/35060009 PubMedCrossRefGoogle Scholar
  15. Carazo-Salas RE, Guarguaglini G, Gruss OJ, Segref A, Karsenti E, Mattaj IW (1999) Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation. Nature 400(6740):178–181. doi: 10.1038/22133 PubMedCrossRefGoogle Scholar
  16. Carmena M, Wheelock M, Funabiki H, Earnshaw WC (2012) The chromosomal passenger complex (CPC): from easy rider to the godfather of mitosis. Nat Rev Mol Cell Biol 13(12):789–803. doi:nrm3474 [pii]  10.1038/nrm3474 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Carter SL, Eklund AC, Kohane IS, Harris LN, Szallasi Z (2006) A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat Genet 38(9):1043–1048. doi:ng1861 [pii]  10.1038/ng1861 PubMedCrossRefGoogle Scholar
  18. Cassimeris L (2002) The oncoprotein 18/stathmin family of microtubule destabilizers. Curr Opin Cell Biol 14(1):18–24PubMedCrossRefGoogle Scholar
  19. Caudron M, Bunt G, Bastiaens P, Karsenti E (2005) Spatial coordination of spindle assembly by chromosome-mediated signaling gradients. Science 309(5739):1373–1376. doi:309/5739/1373 [pii]  10.1126/science.1115964 PubMedCrossRefGoogle Scholar
  20. Chavali PL, Putz M, Gergely F (2014) Small organelle, big responsibility: the role of centrosomes in development and disease. Philos Trans R Soc Lond B Biol Sci 369(1650). pii:20130468. doi: 10.1098/rstb.2013.0468 Google Scholar
  21. Cheerambathur DK, Gassmann R, Cook B, Oegema K, Desai A (2013) Crosstalk between microtubule attachment complexes ensures accurate chromosome segregation. Science 342(6163):1239–1242. doi:science.1246232 [pii]  10.1126/science.1246232 PubMedCrossRefGoogle Scholar
  22. Chiang T, Duncan FE, Schindler K, Schultz RM, Lampson MA (2010) Evidence that weakened centromere cohesion is a leading cause of age-related aneuploidy in oocytes. Curr Biol 20(17):1522–1528. doi:S0960-9822(10)00817-1 [pii]  10.1016/j.cub.2010.06.069 PubMedPubMedCentralCrossRefGoogle Scholar
  23. Clarke PR, Zhang C (2008) Spatial and temporal coordination of mitosis by Ran GTPase. Nat Rev Mol Cell Biol 9(6):464–477. doi:nrm2410 [pii]  10.1038/nrm2410 PubMedCrossRefGoogle Scholar
  24. Cortes J, Vidal M (2011) Beyond taxanes: the next generation of microtubule-targeting agents. Breast Cancer Res Treat. doi: 10.1007/s10549-011-1875-6 PubMedPubMedCentralGoogle Scholar
  25. Cross RA, McAinsh A (2014) Prime movers: the mechanochemistry of mitotic kinesins. Nat Rev Mol Cell Biol 15(4):257–271. doi:nrm3768 [pii]  10.1038/nrm3768 PubMedCrossRefGoogle Scholar
  26. Daum JR, Potapova TA, Sivakumar S, Daniel JJ, Flynn JN, Rankin S, Gorbsky GJ (2011) Cohesion fatigue induces chromatid separation in cells delayed at metaphase. Curr Biol 21(12):1018–1024. doi:S0960-9822(11)00588-4 [pii]  10.1016/j.cub.2011.05.032 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Delaval B, Doxsey SJ (2010) Pericentrin in cellular function and disease. J Cell Biol 188(2):181–190. doi:jcb.200908114 [pii]  10.1083/jcb.200908114 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Desai A, Verma S, Mitchison TJ, Walczak CE (1999) Kin I kinesins are microtubule-destabilizing enzymes. Cell 96(1):69–78. doi:S0092-8674(00)80960-5 [pii]PubMedCrossRefGoogle Scholar
  29. Ding S, Zhao Z, Sun D, Wu F, Bi D, Lu J, Xing N, Sun L, Wu H, Ding K (2014) Eg5 inhibitor, a novel potent targeted therapy, induces cell apoptosis in renal cell carcinoma. Tumour Biol. doi: 10.1007/s13277-014-2022-x PubMedCentralGoogle Scholar
  30. Du Y, English CA, Ohi R (2010) The kinesin-8 Kif18A dampens microtubule plus-end dynamics. Curr Biol 20(4):374–380. doi:S0960-9822(09)02212-X [pii]  10.1016/j.cub.2009.12.049 PubMedCrossRefGoogle Scholar
  31. Duijf PH, Benezra R (2013) The cancer biology of whole-chromosome instability. Oncogene 32(40):4727–4736. doi:onc2012616 [pii]  10.1038/onc.2012.616 PubMedCrossRefGoogle Scholar
  32. Duncan FE, Hornick JE, Lampson MA, Schultz RM, Shea LD, Woodruff TK (2012) Chromosome cohesion decreases in human eggs with advanced maternal age. Aging Cell 11(6):1121–1124. doi: 10.1111/j.1474-9726.2012.00866.x PubMedPubMedCentralCrossRefGoogle Scholar
  33. Euteneuer U, McIntosh JR (1981) Structural polarity of kinetochore microtubules in PtK1 cells. J Cell Biol 89(2):338–345PubMedCrossRefGoogle Scholar
  34. Euteneuer U, Ris H, Borisy GG (1983) Polarity of kinetochore microtubules in Chinese hamster ovary cells after recovery from a colcemid block. J Cell Biol 97(1):202–208PubMedCrossRefGoogle Scholar
  35. Eyers PA, Erikson E, Chen LG, Maller JL (2003) A novel mechanism for activation of the protein kinase Aurora A. Curr Biol 13(8):691–697. doi:S0960982203001660 [pii]PubMedCrossRefGoogle Scholar
  36. Fish JL, Kosodo Y, Enard W, Paabo S, Huttner WB (2006) Aspm specifically maintains symmetric proliferative divisions of neuroepithelial cells. Proc Natl Acad Sci U S A 103(27):10438–10443. doi:0604066103 [pii]  10.1073/pnas.0604066103 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Funabiki H, Murray AW (2000) The Xenopus chromokinesin Xkid is essential for metaphase chromosome alignment and must be degraded to allow anaphase chromosome movement. Cell 102(4):411–424. doi:S0092-8674(00)00047-7 [pii]PubMedCrossRefGoogle Scholar
  38. Gard DL, Kirschner MW (1987) A microtubule-associated protein from Xenopus eggs that specifically promotes assembly at the plus-end. J Cell Biol 105(5):2203–2215PubMedCrossRefGoogle Scholar
  39. Glotzer M (2009) The 3Ms of central spindle assembly: microtubules, motors and MAPs. Nat Rev Mol Cell Biol 10(1):9–20. doi:nrm2609 [pii]  10.1038/nrm2609 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Gomez-Ferreria MA, Bashkurov M, Helbig AO, Larsen B, Pawson T, Gingras AC, Pelletier L (2012) Novel NEDD1 phosphorylation sites regulate gamma-tubulin binding and mitotic spindle assembly. J Cell Sci 125(Pt 16):3745–3751. doi:jcs.105130 [pii]  10.1242/jcs.105130 PubMedCrossRefGoogle Scholar
  41. Goodwin SS, Vale RD (2010) Patronin regulates the microtubule network by protecting microtubule minus ends. Cell 143(2):263–274. doi:S0092-8674(10)01070-6 [pii]  10.1016/j.cell.2010.09.022 PubMedPubMedCentralCrossRefGoogle Scholar
  42. Goshima G, Mayer M, Zhang N, Stuurman N, Vale RD (2008) Augmin: a protein complex required for centrosome-independent microtubule generation within the spindle. J Cell Biol 181(3):421–429. doi:jcb.200711053 [pii]  10.1083/jcb.200711053 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Goshima G, Wollman R, Goodwin SS, Zhang N, Scholey JM, Vale RD, Stuurman N (2007) Genes required for mitotic spindle assembly in Drosophila S2 cells. Science 316(5823):417–421. doi:1141314 [pii]  10.1126/science.1141314 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Groen AC, Cameron LA, Coughlin M, Miyamoto DT, Mitchison TJ, Ohi R (2004) XRHAMM functions in ran-dependent microtubule nucleation and pole formation during anastral spindle assembly. Curr Biol 14(20):1801–1811. doi:S0960982204007924 [pii]  10.1016/j.cub.2004.10.002 PubMedCrossRefGoogle Scholar
  45. Gruss OJ, Carazo-Salas RE, Schatz CA, Guarguaglini G, Kast J, Wilm M, Le Bot N, Vernos I, Karsenti E, Mattaj IW (2001) Ran induces spindle assembly by reversing the inhibitory effect of importin alpha on TPX2 activity. Cell 104(1):83–93. doi:S0092-8674(01)00193-3 [pii]PubMedCrossRefGoogle Scholar
  46. Gruss OJ, Wittmann M, Yokoyama H, Pepperkok R, Kufer T, Sillje H, Karsenti E, Mattaj IW, Vernos I (2002) Chromosome-induced microtubule assembly mediated by TPX2 is required for spindle formation in HeLa cells. Nat Cell Biol 4(11):871–879. doi: 10.1038/ncb870 ncb870 [pii]PubMedCrossRefGoogle Scholar
  47. Gupta KK, Li C, Duan A, Alberico EO, Kim OV, Alber MS, Goodson HV (2013) Mechanism for the catastrophe-promoting activity of the microtubule destabilizer Op18/stathmin. Proc Natl Acad Sci U S A 110(51):20449–20454. doi:1309958110 [pii]  10.1073/pnas.1309958110 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Guse A, Mishima M, Glotzer M (2005) Phosphorylation of ZEN-4/MKLP1 by aurora B regulates completion of cytokinesis. Curr Biol 15(8):778–786. doi:S0960-9822(05)00335-0 [pii]  10.1016/j.cub.2005.03.041 PubMedCrossRefGoogle Scholar
  49. Haren L, Remy MH, Bazin I, Callebaut I, Wright M, Merdes A (2006) NEDD1-dependent recruitment of the gamma-tubulin ring complex to the centrosome is necessary for centriole duplication and spindle assembly. J Cell Biol 172(4):505–515. doi:jcb.200510028 [pii]  10.1083/jcb.200510028 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Harrison MR, Holen KD, Liu G (2009) Beyond taxanes: a review of novel agents that target mitotic tubulin and microtubules, kinases, and kinesins. Clin Adv Hematol Oncol 7(1):54–64PubMedPubMedCentralGoogle Scholar
  51. Heald R, Tournebize R, Blank T, Sandaltzopoulos R, Becker P, Hyman A, Karsenti E (1996) Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382(6590):420–425. doi: 10.1038/382420a0 PubMedCrossRefGoogle Scholar
  52. Hentrich C, Surrey T (2010) Microtubule organization by the antagonistic mitotic motors kinesin-5 and kinesin-14. J Cell Biol 189(3):465–480. doi:jcb.200910125 [pii]  10.1083/jcb.200910125 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Holubcova Z, Blayney M, Elder K, Schuh M (2015) Human oocytes. Error-prone chromosome-mediated spindle assembly favors chromosome segregation defects in human oocytes. Science 348(6239):1143–1147. doi:348/6239/1143 [pii]  10.1126/science.aaa9529 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Hunter AW, Caplow M, Coy DL, Hancock WO, Diez S, Wordeman L, Howard J (2003) The kinesin-related protein MCAK is a microtubule depolymerase that forms an ATP-hydrolyzing complex at microtubule ends. Mol Cell 11(2):445–457. doi:S1097276503000492 [pii]PubMedCrossRefGoogle Scholar
  55. Inoue S, Sato H (1967) Cell motility by labile association of molecules. The nature of mitotic spindle fibers and their role in chromosome movement. J Gen Physiol 50(6):Suppl:259–292Google Scholar
  56. Janke C, Bulinski JC (2011) Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat Rev Mol Cell Biol 12(12):773–786. doi: 10.1038/nrm3227 PubMedCrossRefGoogle Scholar
  57. Jeyaprakash AA, Santamaria A, Jayachandran U, Chan YW, Benda C, Nigg EA, Conti E (2012) Structural and functional organization of the Ska complex, a key component of the kinetochore-microtubule interface. Mol Cell 46(3):274–286. doi:S1097-2765(12)00212-2 [pii]  10.1016/j.molcel.2012.03.005 PubMedCrossRefGoogle Scholar
  58. Jiang K, Hua S, Mohan R, Grigoriev I, Yau KW, Liu Q, Katrukha EA, Altelaar AF, Heck AJ, Hoogenraad CC, Akhmanova A (2014) Microtubule minus-end stabilization by polymerization-driven CAMSAP deposition. Dev Cell 28(3):295–309. doi:S1534-5807(14)00002-1 [pii]  10.1016/j.devcel.2014.01.001 PubMedCrossRefGoogle Scholar
  59. Joglekar AP, Bloom KS, Salmon ED (2010) Mechanisms of force generation by end-on kinetochore-microtubule attachments. Curr Opin Cell Biol 22(1):57–67. doi:S0955-0674(09)00239-7 [pii]  10.1016/ PubMedPubMedCentralCrossRefGoogle Scholar
  60. Johmura Y, Soung NK, Park JE, Yu LR, Zhou M, Bang JK, Kim BY, Veenstra TD, Erikson RL, Lee KS (2011) Regulation of microtubule-based microtubule nucleation by mammalian polo-like kinase 1. Proc Natl Acad Sci U S A 108(28):11446–11451. doi:1106223108 [pii]  10.1073/pnas.1106223108 PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kalab P, Pu RT, Dasso M (1999) The ran GTPase regulates mitotic spindle assembly. Curr Biol 9(9):481–484. doi:S0960-9822(99)80213-9 [pii]PubMedCrossRefGoogle Scholar
  62. Kalab P, Weis K, Heald R (2002) Visualization of a Ran-GTP gradient in interphase and mitotic Xenopus egg extracts. Science 295(5564):2452–2456. doi: 10.1126/science.1068798 295/5564/2452 [pii]PubMedCrossRefGoogle Scholar
  63. Kamasaki T, O’Toole E, Kita S, Osumi M, Usukura J, McIntosh JR, Goshima G (2013) Augmin-dependent microtubule nucleation at microtubule walls in the spindle. J Cell Biol 202(1):25–33. doi:jcb.201304031 [pii]  10.1083/jcb.201304031 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Karsenti E, Newport J, Kirschner M (1984) Respective roles of centrosomes and chromatin in the conversion of microtubule arrays from interphase to metaphase. J Cell Biol 99(1 Pt 2):47s–54sPubMedPubMedCentralCrossRefGoogle Scholar
  65. Karsenti E, Vernos I (2001) The mitotic spindle: a self-made machine. Science 294(5542):543–547. doi: 10.1126/science.1063488 294/5542/543 [pii]PubMedCrossRefGoogle Scholar
  66. Kavallaris M (2010) Microtubules and resistance to tubulin-binding agents. Nat Rev Cancer 10(3):194–204. doi:nrc2803 [pii]  10.1038/nrc2803 PubMedCrossRefGoogle Scholar
  67. Khodjakov A, Rieder CL (1999) The sudden recruitment of gamma-tubulin to the centrosome at the onset of mitosis and its dynamic exchange throughout the cell cycle, do not require microtubules. J Cell Biol 146(3):585–596PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kirschner M, Mitchison T (1986) Review. Beyond self-assembly: from microtubules to morphogenesis. Cell 45(3):329–342PubMedCrossRefGoogle Scholar
  69. Kitamura E, Tanaka K, Komoto S, Kitamura Y, Antony C, Tanaka TU (2010) Kinetochores generate microtubules with distal plus ends: their roles and limited lifetime in mitosis. Dev Cell 18(2):248–259. doi:S1534-5807(10)00017-1 [pii]  10.1016/j.devcel.2009.12.018 PubMedPubMedCentralCrossRefGoogle Scholar
  70. Kiyomitsu T, Cheeseman IM (2012) Chromosome- and spindle-pole-derived signals generate an intrinsic code for spindle position and orientation. Nat Cell Biol 14(3):311–317. doi:ncb2440 [pii]  10.1038/ncb2440 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Kollman JM, Merdes A, Mourey L, Agard DA (2011) Microtubule nucleation by gamma-tubulin complexes. Nat Rev Mol Cell Biol. doi:nrm3209 [pii]  10.1038/nrm3209
  72. Kronja I, Kruljac-Letunic A, Caudron-Herger M, Bieling P, Karsenti E (2009) XMAP215-EB1 interaction is required for proper spindle assembly and chromosome segregation in Xenopus egg extract. Mol Biol Cell 20(11):2684–2696. doi:E08-10-1051 [pii]  10.1091/mbc.E08-10-1051 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Kurasawa Y, Earnshaw WC, Mochizuki Y, Dohmae N, Todokoro K (2004) Essential roles of KIF4 and its binding partner PRC1 in organized central spindle midzone formation. EMBO J 23(16):3237–3248. doi: 10.1038/sj.emboj.7600347 7600347 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  74. Lawo S, Bashkurov M, Mullin M, Ferreria MG, Kittler R, Habermann B, Tagliaferro A, Poser I, Hutchins JR, Hegemann B, Pinchev D, Buchholz F, Peters JM, Hyman AA, Gingras AC, Pelletier L (2009) HAUS, the 8-subunit human Augmin complex, regulates centrosome and spindle integrity. Curr Biol 19(10):816–826. doi:S0960-9822(09)01032-X [pii]  10.1016/j.cub.2009.04.033 PubMedCrossRefGoogle Scholar
  75. Lecland N, Luders J (2014) The dynamics of microtubule minus ends in the human mitotic spindle. Nat Cell Biol 16(8):770–778. doi:ncb2996 [pii]  10.1038/ncb2996 PubMedCrossRefGoogle Scholar
  76. Levesque AA, Compton DA (2001) The chromokinesin Kid is necessary for chromosome arm orientation and oscillation, but not congression, on mitotic spindles. J Cell Biol 154(6):1135–1146. doi: 10.1083/jcb.200106093 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Lioutas A, Vernos I (2013) Aurora A kinase and its substrate TACC3 are required for central spindle assembly. EMBO Rep 14(9):829–836. doi:embor2013109 [pii]  10.1038/embor.2013.109 PubMedPubMedCentralCrossRefGoogle Scholar
  78. Luders J, Patel UK, Stearns T (2006) GCP-WD is a gamma-tubulin targeting factor required for centrosomal and chromatin-mediated microtubule nucleation. Nat Cell Biol 8(2):137–147. doi:ncb1349 [pii]  10.1038/ncb1349 PubMedCrossRefGoogle Scholar
  79. Ma N, Tulu US, Ferenz NP, Fagerstrom C, Wilde A, Wadsworth P (2010) Poleward transport of TPX2 in the mammalian mitotic spindle requires dynein, Eg5, and microtubule flux. Mol Biol Cell 21(6):979–988. doi:E09-07-0601 [pii]  10.1091/mbc.E09-07-0601 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Magidson V, O’Connell CB, Loncarek J, Paul R, Mogilner A, Khodjakov A (2011) The spatial arrangement of chromosomes during prometaphase facilitates spindle assembly. Cell 146(4):555–567. doi:S0092-8674(11)00773-2 [pii]  10.1016/j.cell.2011.07.012 PubMedPubMedCentralCrossRefGoogle Scholar
  81. Magiera MM, Janke C (2014) Post-translational modifications of tubulin. Curr Biol 24(9):R351–R354. doi:S0960-9822(14)00324-8 [pii]  10.1016/j.cub.2014.03.032 PubMedCrossRefGoogle Scholar
  82. Maiato H, Khodjakov A, Rieder CL (2005) Drosophila CLASP is required for the incorporation of microtubule subunits into fluxing kinetochore fibres. Nat Cell Biol 7(1):42–47. doi:ncb1207 [pii]  10.1038/ncb1207 PubMedPubMedCentralCrossRefGoogle Scholar
  83. Manning AL, Bakhoum SF, Maffini S, Correia-Melo C, Maiato H, Compton DA (2010) CLASP1, astrin and Kif2b form a molecular switch that regulates kinetochore-microtubule dynamics to promote mitotic progression and fidelity. EMBO J 29(20):3531–3543. doi:emboj2010230 [pii]  10.1038/emboj.2010.230 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Maresca TJ, Groen AC, Gatlin JC, Ohi R, Mitchison TJ, Salmon ED (2009) Spindle assembly in the absence of a RanGTP gradient requires localized CPC activity. Curr Biol 19(14):1210–1215. doi:S0960-9822(09)01197-X [pii]  10.1016/j.cub.2009.05.061 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Maurer SP, Fourniol FJ, Bohner G, Moores CA, Surrey T (2012) EBs recognize a nucleotide-dependent structural cap at growing microtubule ends. Cell 149(2):371–382. doi:S0092-8674(12)00341-8 [pii]  10.1016/j.cell.2012.02.049 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Mayer TU, Kapoor TM, Haggarty SJ, King RW, Schreiber SL, Mitchison TJ (1999) Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 286(5441):971–974. doi:7948 [pii]PubMedCrossRefGoogle Scholar
  87. Mayr MI, Hummer S, Bormann J, Gruner T, Adio S, Woehlke G, Mayer TU (2007) The human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression. Curr Biol 17(6):488–498. doi:S0960-9822(07)01013-5 [pii]  10.1016/j.cub.2007.02.036 PubMedCrossRefGoogle Scholar
  88. Mazumdar M, Misteli T (2005) Chromokinesins: multitalented players in mitosis. Trends Cell Biol 15(7):349–355. doi: 10.1016/j.tcb.2005.05.006 PubMedCrossRefGoogle Scholar
  89. McHedlishvili N, Wieser S, Holtackers R, Mouysset J, Belwal M, Amaro AC, Meraldi P (2012) Kinetochores accelerate centrosome separation to ensure faithful chromosome segregation. J Cell Sci 125(Pt 4):906–918. doi:jcs.091967 [pii]  10.1242/jcs.091967 PubMedCrossRefGoogle Scholar
  90. Meunier S, Shvedunova M, Van Nguyen N, Avila L, Vernos I, Akhtar A (2015) An epigenetic regulator emerges as microtubule minus-end binding and stabilizing factor in mitosis. Nat Commun 6:7889. doi:ncomms8889 [pii]  10.1038/ncomms8889 PubMedCrossRefGoogle Scholar
  91. Meunier S, Vernos I (2011) K-fibre minus ends are stabilized by a RanGTP-dependent mechanism essential for functional spindle assembly. Nat Cell Biol 13(12):1406–1414. doi:ncb2372 [pii]  10.1038/ncb2372 PubMedCrossRefGoogle Scholar
  92. Meunier S, Vernos I (2012) Microtubule assembly during mitosis – from distinct origins to distinct functions? J Cell Sci 125(Pt 12):2805–2814. doi:jcs.092429 [pii]  10.1242/jcs.092429 PubMedCrossRefGoogle Scholar
  93. Mimori-Kiyosue Y, Shiina N, Tsukita S (2000) The dynamic behavior of the APC-binding protein EB1 on the distal ends of microtubules. Curr Biol 10(14):865–868. doi:S0960-9822(00)00600-X [pii]PubMedCrossRefGoogle Scholar
  94. Mishima M, Kaitna S, Glotzer M (2002) Central spindle assembly and cytokinesis require a kinesin-like protein/RhoGAP complex with microtubule bundling activity. Dev Cell 2(1):41–54. doi:S1534580701001101 [pii]PubMedCrossRefGoogle Scholar
  95. Mishra RK, Chakraborty P, Arnaoutov A, Fontoura BM, Dasso M (2010) The Nup107-160 complex and gamma-TuRC regulate microtubule polymerization at kinetochores. Nat Cell Biol 12(2):164–169. doi:ncb2016 [pii]  10.1038/ncb2016 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Mitchison T, Kirschner M (1984) Dynamic instability of microtubule growth. Nature 312(5991):237–242PubMedCrossRefGoogle Scholar
  97. Mitchison TJ (2012) The proliferation rate paradox in antimitotic chemotherapy. Mol Biol Cell 23(1):1–6. doi:23/1/1 [pii]  10.1091/mbc.E10-04-0335 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Mollinari C, Kleman JP, Jiang W, Schoehn G, Hunter T, Margolis RL (2002) PRC1 is a microtubule binding and bundling protein essential to maintain the mitotic spindle midzone. J Cell Biol 157(7):1175–1186. doi: 10.1083/jcb.200111052, jcb.200111052 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  99. Moudjou M, Bordes N, Paintrand M, Bornens M (1996) gamma-Tubulin in mammalian cells: the centrosomal and the cytosolic forms. J Cell Sci 109(Pt 4):875–887PubMedGoogle Scholar
  100. Mountain V, Simerly C, Howard L, Ando A, Schatten G, Compton DA (1999) The kinesin-related protein, HSET, opposes the activity of Eg5 and cross-links microtubules in the mammalian mitotic spindle. J Cell Biol 147(2):351–366PubMedPubMedCentralCrossRefGoogle Scholar
  101. Needleman DJ, Groen A, Ohi R, Maresca T, Mirny L, Mitchison T (2010) Fast microtubule dynamics in meiotic spindles measured by single molecule imaging: evidence that the spindle environment does not stabilize microtubules. Mol Biol Cell 21(2):323–333. doi:E09-09-0816 [pii]  10.1091/mbc.E09-09-0816 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Noatynska A, Gotta M, Meraldi P (2012) Mitotic spindle (DIS)orientation and DISease: cause or consequence? J Cell Biol 199(7):1025–1035. doi:jcb.201209015 [pii]  10.1083/jcb.201209015 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Ohba T, Nakamura M, Nishitani H, Nishimoto T (1999) Self-organization of microtubule asters induced in Xenopus egg extracts by GTP-bound Ran. Science 284(5418):1356–1358PubMedCrossRefGoogle Scholar
  104. Paweletz N (2001) Walther Flemming: pioneer of mitosis research. Nat Rev Mol Cell Biol 2(1):72–75. doi: 10.1038/35048077 35048077 [pii]PubMedCrossRefGoogle Scholar
  105. Petry S, Groen AC, Ishihara K, Mitchison TJ, Vale RD (2013) Branching microtubule nucleation in Xenopus egg extracts mediated by augmin and TPX2. Cell 152(4):768–777. doi:S0092-8674(13)00015-9 [pii]  10.1016/j.cell.2012.12.044 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Petry S, Pugieux C, Nedelec FJ, Vale RD (2011) Augmin promotes meiotic spindle formation and bipolarity in Xenopus egg extracts. Proc Natl Acad Sci U S A 108(35):14473–14478. doi:1110412108 [pii]  10.1073/pnas.1110412108 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Piehl M, Tulu US, Wadsworth P, Cassimeris L (2004) Centrosome maturation: measurement of microtubule nucleation throughout the cell cycle by using GFP-tagged EB1. Proc Natl Acad Sci U S A 101(6):1584–1588. doi: 10.1073/pnas.0308205100 0308205100 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  108. Pinyol R, Scrofani J, Vernos I (2013) The role of NEDD1 phosphorylation by Aurora A in chromosomal microtubule nucleation and spindle function. Curr Biol 23(2):143–149. doi:S0960-9822(12)01390-5 [pii]  10.1016/j.cub.2012.11.046 PubMedCrossRefGoogle Scholar
  109. Raff EC, Fackenthal JD, Hutchens JA, Hoyle HD, Turner FR (1997) Microtubule architecture specified by a beta-tubulin isoform. Science 275(5296):70–73PubMedCrossRefGoogle Scholar
  110. Reboutier D, Troadec MB, Cremet JY, Chauvin L, Guen V, Salaun P, Prigent C (2013) Aurora A is involved in central spindle assembly through phosphorylation of Ser 19 in P150Glued. J Cell Biol 201(1):65–79. doi:jcb.201210060 [pii]  10.1083/jcb.201210060 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Rieder CL (1981) The structure of the cold-stable kinetochore fiber in metaphase PtK1 cells. Chromosoma 84(1):145–158PubMedCrossRefGoogle Scholar
  112. Rieder CL (2005) Kinetochore fiber formation in animal somatic cells: dueling mechanisms come to a draw. Chromosoma 114(5):310–318. doi: 10.1007/s00412-005-0028-2 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Roberts AJ, Kon T, Knight PJ, Sutoh K, Burgess SA (2013) Functions and mechanics of dynein motor proteins. Nat Rev Mol Cell Biol 14(11):713–726. doi:nrm3667 [pii]  10.1038/nrm3667 PubMedPubMedCentralCrossRefGoogle Scholar
  114. Salmela AL, Kallio MJ (2013) Mitosis as an anti-cancer drug target. Chromosoma 122(5):431–449. doi: 10.1007/s00412-013-0419-8 PubMedCrossRefGoogle Scholar
  115. Sampath SC, Ohi R, Leismann O, Salic A, Pozniakovski A, Funabiki H (2004) The chromosomal passenger complex is required for chromatin-induced microtubule stabilization and spindle assembly. Cell 118(2):187–202. doi: 10.1016/j.cell.2004.06.026 S0092867404006178 [pii]PubMedCrossRefGoogle Scholar
  116. Sardon T, Peset I, Petrova B, Vernos I (2008) Dissecting the role of Aurora A during spindle assembly. EMBO J 27(19):2567–2579. doi:emboj2008173 [pii]  10.1038/emboj.2008.173 PubMedPubMedCentralCrossRefGoogle Scholar
  117. Saxton WM, McIntosh JR (1987) Interzone microtubule behavior in late anaphase and telophase spindles. J Cell Biol 105(2):875–886PubMedCrossRefGoogle Scholar
  118. Scrofani J, Sardon T, Meunier S, Vernos I (2015) Microtubule nucleation in mitosis by a RanGTP-dependent protein complex. Curr Biol 25(2):131–140. doi:S0960-9822(14)01486-9 [pii]  10.1016/j.cub.2014.11.025 PubMedCrossRefGoogle Scholar
  119. Sdelci S, Schutz M, Pinyol R, Bertran MT, Regue L, Caelles C, Vernos I, Roig J (2012) Nek9 phosphorylation of NEDD1/GCP-WD contributes to Plk1 control of gamma-tubulin recruitment to the mitotic centrosome. Curr Biol 22(16):1516–1523. doi:S0960-9822(12)00672-0 [pii]  10.1016/j.cub.2012.06.027 PubMedCrossRefGoogle Scholar
  120. Sharp DJ, Ross JL (2012) Microtubule-severing enzymes at the cutting edge. J Cell Sci 125(Pt 11):2561–2569. doi:jcs.101139 [pii]  10.1242/jcs.101139 PubMedPubMedCentralCrossRefGoogle Scholar
  121. Shrestha RL, Draviam VM (2013) Lateral to end-on conversion of chromosome-microtubule attachment requires kinesins CENP-E and MCAK. Curr Biol 23(16):1514–1526. doi:S0960-9822(13)00765-3 [pii]  10.1016/j.cub.2013.06.040 PubMedPubMedCentralCrossRefGoogle Scholar
  122. Sillje HH, Nagel S, Korner R, Nigg EA (2006) HURP is a Ran-importin beta-regulated protein that stabilizes kinetochore microtubules in the vicinity of chromosomes. Curr Biol 16(8):731–742. doi:S0960-9822(06)01277-2 [pii]  10.1016/j.cub.2006.02.070 PubMedCrossRefGoogle Scholar
  123. Sirajuddin M, Rice LM, Vale RD (2014) Regulation of microtubule motors by tubulin isotypes and post-translational modifications. Nat Cell Biol 16(4):335–344. doi:ncb2920 [pii]  10.1038/ncb2920 PubMedPubMedCentralCrossRefGoogle Scholar
  124. Tanenbaum ME, Medema RH (2010) Mechanisms of centrosome separation and bipolar spindle assembly. Dev Cell 19(6):797–806. doi:S1534-5807(10)00538-1 [pii]  10.1016/j.devcel.2010.11.011 PubMedCrossRefGoogle Scholar
  125. Teixido-Travesa N, Roig J, Luders J (2012) The where, when and how of microtubule nucleation – one ring to rule them all. J Cell Sci 125(Pt 19):4445–4456. doi:jcs.106971 [pii]  10.1242/jcs.106971 PubMedCrossRefGoogle Scholar
  126. Teixido-Travesa N, Villen J, Lacasa C, Bertran MT, Archinti M, Gygi SP, Caelles C, Roig J, Luders J (2010) The gammaTuRC revisited: a comparative analysis of interphase and mitotic human gammaTuRC redefines the set of core components and identifies the novel subunit GCP8. Mol Biol Cell 21(22):3963–3972. doi:E10-05-0408 [pii]  10.1091/mbc.E10-05-0408 PubMedPubMedCentralCrossRefGoogle Scholar
  127. Tirnauer JS, Canman JC, Salmon ED, Mitchison TJ (2002) EB1 targets to kinetochores with attached, polymerizing microtubules. Mol Biol Cell 13(12):4308–4316. doi: 10.1091/mbc.E02-04-0236 PubMedPubMedCentralCrossRefGoogle Scholar
  128. Topham CH, Taylor SS (2013) Mitosis and apoptosis: how is the balance set? Curr Opin Cell Biol 25(6):780–785. doi:S0955-0674(13)00117-8 [pii]  10.1016/ PubMedCrossRefGoogle Scholar
  129. Torosantucci L, De Luca M, Guarguaglini G, Lavia P, Degrassi F (2008) Localized RanGTP accumulation promotes microtubule nucleation at kinetochores in somatic mammalian cells. Mol Biol Cell 19(5):1873–1882. doi:E07-10-1050 [pii]  10.1091/mbc.E07-10-1050 PubMedPubMedCentralCrossRefGoogle Scholar
  130. Tournebize R, Popov A, Kinoshita K, Ashford AJ, Rybina S, Pozniakovsky A, Mayer TU, Walczak CE, Karsenti E, Hyman AA (2000) Control of microtubule dynamics by the antagonistic activities of XMAP215 and XKCM1 in Xenopus egg extracts. Nat Cell Biol 2(1):13–19. doi: 10.1038/71330 PubMedCrossRefGoogle Scholar
  131. Tsai MY, Wiese C, Cao K, Martin O, Donovan P, Ruderman J, Prigent C, Zheng Y (2003) A Ran signalling pathway mediated by the mitotic kinase Aurora A in spindle assembly. Nat Cell Biol 5(3):242–248. doi: 10.1038/ncb936, ncb936 [pii]PubMedCrossRefGoogle Scholar
  132. Tseng BS, Tan L, Kapoor TM, Funabiki H (2010) Dual detection of chromosomes and microtubules by the chromosomal passenger complex drives spindle assembly. Dev Cell 18(6):903–912. doi:S1534-5807(10)00254-6 [pii]  10.1016/j.devcel.2010.05.018 PubMedPubMedCentralCrossRefGoogle Scholar
  133. Tulu US, Fagerstrom C, Ferenz NP, Wadsworth P (2006) Molecular requirements for kinetochore-associated microtubule formation in mammalian cells. Curr Biol 16(5):536–541. doi:S0960-9822(06)01127-4 [pii]  10.1016/j.cub.2006.01.060 PubMedPubMedCentralCrossRefGoogle Scholar
  134. Tulu US, Rusan NM, Wadsworth P (2003) Peripheral, non-centrosome-associated microtubules contribute to spindle formation in centrosome-containing cells. Curr Biol 13(21):1894–1899. doi:S0960982203007449 [pii]PubMedCrossRefGoogle Scholar
  135. Uehara R, Goshima G (2010) Functional central spindle assembly requires de novo microtubule generation in the interchromosomal region during anaphase. J Cell Biol 191(2):259–267. doi:jcb.201004150 [pii]  10.1083/jcb.201004150 PubMedPubMedCentralCrossRefGoogle Scholar
  136. Uehara R, Nozawa RS, Tomioka A, Petry S, Vale RD, Obuse C, Goshima G (2009) The augmin complex plays a critical role in spindle microtubule generation for mitotic progression and cytokinesis in human cells. Proc Natl Acad Sci U S A 106(17):6998–7003. doi:0901587106 [pii]  10.1073/pnas.0901587106 PubMedPubMedCentralCrossRefGoogle Scholar
  137. van den Wildenberg SM, Tao L, Kapitein LC, Schmidt CF, Scholey JM, Peterman EJ (2008) The homotetrameric kinesin-5 KLP61F preferentially crosslinks microtubules into antiparallel orientations. Curr Biol 18(23):1860–1864. doi:S0960-9822(08)01395-X [pii]  10.1016/j.cub.2008.10.026 PubMedPubMedCentralCrossRefGoogle Scholar
  138. Vanneste D, Ferreira V, Vernos I (2011) Chromokinesins: localization-dependent functions and regulation during cell division. Biochem Soc Trans 39(5):1154–1160. doi:BST0391154 [pii]  10.1042/BST0391154 PubMedCrossRefGoogle Scholar
  139. Vasquez RJ, Gard DL, Cassimeris L (1994) XMAP from Xenopus eggs promotes rapid plus end assembly of microtubules and rapid microtubule polymer turnover. J Cell Biol 127(4):985–993PubMedCrossRefGoogle Scholar
  140. Wade RH (2009) On and around microtubules: an overview. Mol Biotechnol 43(2):177–191. doi: 10.1007/s12033-009-9193-5 PubMedCrossRefGoogle Scholar
  141. Wainman A, Buster DW, Duncan T, Metz J, Ma A, Sharp D, Wakefield JG (2009) A new Augmin subunit, Msd1, demonstrates the importance of mitotic spindle-templated microtubule nucleation in the absence of functioning centrosomes. Genes Dev 23(16):1876–1881. doi:23/16/1876 [pii]  10.1101/gad.532209 PubMedPubMedCentralCrossRefGoogle Scholar
  142. Walczak CE, Gayek S, Ohi R (2013) Microtubule-depolymerizing kinesins. Annu Rev Cell Dev Biol 29:417–441. doi: 10.1146/annurev-cellbio-101512-122345 PubMedCrossRefGoogle Scholar
  143. Walczak CE, Mitchison TJ, Desai A (1996) XKCM1: a Xenopus kinesin-related protein that regulates microtubule dynamics during mitotic spindle assembly. Cell 84(1):37–47. doi:S0092-8674(00)80991-5 [pii]PubMedCrossRefGoogle Scholar
  144. Walczak CE, Verma S, Mitchison TJ (1997) XCTK2: a kinesin-related protein that promotes mitotic spindle assembly in Xenopus laevis egg extracts. J Cell Biol 136(4):859–870PubMedPubMedCentralCrossRefGoogle Scholar
  145. Wang H, Vo T, Hajar A, Li S, Chen X, Parissenti AM, Brindley DN, Wang Z (2014) Multiple mechanisms underlying acquired resistance to taxanes in selected docetaxel-resistant MCF-7 breast cancer cells. BMC Cancer 14:37. doi:1471-2407-14-37 [pii]  10.1186/1471-2407-14-37 PubMedPubMedCentralCrossRefGoogle Scholar
  146. Waters JC, Mitchison TJ, Rieder CL, Salmon ED (1996) The kinetochore microtubule minus-end disassembly associated with poleward flux produces a force that can do work. Mol Biol Cell 7(10):1547–1558PubMedPubMedCentralCrossRefGoogle Scholar
  147. White EA, Glotzer M (2012) Centralspindlin: at the heart of cytokinesis. Cytoskeleton (Hoboken) 69(11):882–892. doi: 10.1002/cm.21065 CrossRefGoogle Scholar
  148. Wiese C, Zheng Y (2000) A new function for the gamma-tubulin ring complex as a microtubule minus-end cap. Nat Cell Biol 2(6):358–364. doi: 10.1038/35014051 PubMedCrossRefGoogle Scholar
  149. Wittmann T, Wilm M, Karsenti E, Vernos I (2000) TPX2, A novel xenopus MAP involved in spindle pole organization. J Cell Biol 149(7):1405–1418PubMedPubMedCentralCrossRefGoogle Scholar
  150. Wollman R, Cytrynbaum EN, Jones JT, Meyer T, Scholey JM, Mogilner A (2005) Efficient chromosome capture requires a bias in the ‘search-and-capture’ process during mitotic-spindle assembly. Curr Biol 15(9):828–832. doi:S0960-9822(05)00284-8 [pii]  10.1016/j.cub.2005.03.019 PubMedCrossRefGoogle Scholar
  151. Yingling J, Youn YH, Darling D, Toyo-Oka K, Pramparo T, Hirotsune S, Wynshaw-Boris A (2008) Neuroepithelial stem cell proliferation requires LIS1 for precise spindle orientation and symmetric division. Cell 132(3):474–486. doi:S0092-8674(08)00126-8 [pii]  10.1016/j.cell.2008.01.026 PubMedPubMedCentralCrossRefGoogle Scholar
  152. Zanic M, Widlund PO, Hyman AA, Howard J (2013) Synergy between XMAP215 and EB1 increases microtubule growth rates to physiological levels. Nat Cell Biol 15(6):688–693. doi:ncb2744 [pii]  10.1038/ncb2744 PubMedCrossRefGoogle Scholar
  153. Zhang C, Hughes M, Clarke PR (1999) Ran-GTP stabilises microtubule asters and inhibits nuclear assembly in Xenopus egg extracts. J Cell Sci 112(Pt 14):2453–2461PubMedGoogle Scholar
  154. Zhang R, Alushin GM, Brown A, Nogales E (2015) Mechanistic origin of microtubule dynamic instability and its modulation by EB proteins. Cell 162(4):849–859. doi:S0092-8674(15)00849-1 [pii]  10.1016/j.cell.2015.07.012 PubMedCrossRefGoogle Scholar
  155. Zhang X, Chen Q, Feng J, Hou J, Yang F, Liu J, Jiang Q, Zhang C (2009) Sequential phosphorylation of Nedd1 by Cdk1 and Plk1 is required for targeting of the gammaTuRC to the centrosome. J Cell Sci 122(Pt 13):2240–2251. doi:jcs.042747 [pii]  10.1242/jcs.042747 PubMedCrossRefGoogle Scholar
  156. Zhu H, Coppinger JA, Jang CY, Yates JR 3rd, Fang G (2008) FAM29A promotes microtubule amplification via recruitment of the NEDD1-gamma-tubulin complex to the mitotic spindle. J Cell Biol 183(5):835–848. doi:jcb.200807046 [pii]  10.1083/jcb.200807046 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  1. 1.Cell and Developmental Biology ProgramCentre for Genomic Regulation (CRG), the Barcelona Institute of Science and TechnologyBarcelonaSpain
  2. 2.Universitat Pompeu Fabra (UPF)BarcelonaSpain
  3. 3.Institució Catalana de Recerca I Estudis Avançats (ICREA)BarcelonaSpain

Personalised recommendations