Skip to main content

Engineered Nanoparticles and the Immune System: Interaction and Consequences

Abstract

During the last two decades, engineered nanomaterial/nanoparticles have emerged in different fields of our daily life. In fact they are used for a variety of applications, such as colour pigments, solar cells, and waste water treatment. Furthermore, nanoparticles are found in consumer products that may be in contact with the human organism, e.g., food packaging, shampoos, sunscreens, toothpastes, and cigarettes. Thus, it is of great importance to evaluate how nanoparticles interact both with human beings and with the environment, considering that nanoparticles are assimilated as waste in the environment and introduced in the food chain.

In assessing nanoparticle safety, their possible effects on immune responses are a major issue, since the immune system is deputed to defending and maintaining the integrity of the body, and its failure is the cause of damage and disease.

This brief review will focus on the effects of nanoparticles on immunity, with a special focus on human health, but also include immunity of environmental species (such as marine and earth invertebrates) as a key tool in predicting environmental nanosafety.

Keywords

  • Innate Immune System
  • NLRP3 Inflammasome
  • Foreign Agent
  • Mononuclear Phagocyte System
  • NLRP3 Inflammasome Activation

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-7091-1890-0_9
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-7091-1890-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 9.1
Fig. 9.2

References

  • Agashe HB, Dutta T, Garg M et al (2006) Investigations on the toxicological profile of functionalized fifth-generation poly (propylene-imine) dendrimer. J Pharm Pharmacol 58:1491–1498

    CAS  PubMed  CrossRef  Google Scholar 

  • Aggarwal P, Hall JB, McLeland CB et al (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61:428–437

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  • Andreev SM, Babakhin AA, Petrukhina AO et al (2000) Immunogenic and allergenic properties of fullerene conjugates with amino acids and proteins. Dokl Biochem 370:4–7

    CAS  PubMed  Google Scholar 

  • Barmo C, Ciacci C, Canonico B et al (2013) In vivo effects of n-TiO2 on digestive gland and immune function of the marine bivalve Mytilus galloprovincialis. Aquat Toxicol 9:132–133

    Google Scholar 

  • Bartneck M, Keul HA, Zwadlo-Klarwasser G et al (2010) Phagocytosis independent extracellular nanoparticle clearance by human immune cells. Nano Lett 10:59–63

    CAS  PubMed  CrossRef  Google Scholar 

  • Boraschi D, Costantino L, Italiani P (2012) Interaction of nanoparticles with immunocompetent cells: nanosafety considerations. Nanomedicine (Lond) 7:121–131

    CAS  CrossRef  Google Scholar 

  • Braden BC, Goldbaum FA, Chen BX et al (2000) X-ray crystal structure of an anti-Buckminsterfullerene antibody fab fragment: biomolecular recognition of C(60). Proc Natl Acad Sci U S A 97:12193–12197

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  • Canesi L, Ciacci C, Fabbri R et al (2012) Bivalve molluscs as a unique target group for nanoparticle toxicity. Mar Environ Res 76:16–21

    CAS  PubMed  CrossRef  Google Scholar 

  • Caron W, Rawal S, Song G et al (2012) Bidirectional interaction between nanoparticles and cells of the mononuclear phagocyte system. In: Yarmush ML, Shi D (eds) Frontiers in nanobiomedical research. World Scientific Publishing, Singapore

    Google Scholar 

  • Casals E, Pfaller T, Duschl A et al (2010) Time evolution of the nanoparticle protein corona. ACS Nano 4:3623–3632

    CAS  PubMed  CrossRef  Google Scholar 

  • Cassel SL, Eisenbarth SC, Iyer SS et al (2008) The Nalp3 inflammasome is essential for the development of silicosis. Proc Natl Acad Sci U S A 105:9035–9040

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  • Champion JA, Mitragotri S (2006) Role of target geometry in phagocytosis. Proc Natl Acad Sci U S A 103:4930–4934

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  • Champion JA, Katare YK, Mitragotri S (2007) Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J Control Release 121:3–9

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  • Chanan-Khan A, Szebeni J, Savay S et al (2003) Complement activation following first exposure to pegylated liposomal doxorubicin (Doxil): possible role in hypersensitivity reactions. Ann Oncol 14:1430–1437

    CAS  PubMed  CrossRef  Google Scholar 

  • Chang ZL (2009) Recent development of the mononuclear phagocyte system: in memory of Metchnikoff and Ehrlich on the 100th anniversary of the 1908 Nobel Prize in Physiology or Medicine. Biol Cell 101:709–721

    CAS  PubMed  CrossRef  Google Scholar 

  • Chen BX, Wilson SR, Das M et al (1998) Antigenicity of fullerenes: antibodies specific for fullerenes and their characteristics. Proc Natl Acad Sci U S A 95:10809–10813

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  • Chen Z, Meng H, Xing G et al (2008) Age-related differences in pulmonary and cardiovascular responses to SiO2 nanoparticle inhalation: nanotoxicity has susceptible population. Environ Sci Technol 42:8985–8992

    CAS  PubMed  CrossRef  Google Scholar 

  • Chong CS, Cao M, Wong WW et al (2005) Enhancement of T helper type 1 immune responses against hepatitis B virus core antigen by PLGA nanoparticle vaccine delivery. J Control Release 102:85–99

    CAS  PubMed  CrossRef  Google Scholar 

  • Ciacci C, Canonico B, Bilanicova D et al (2012) Immunomodulation by different types of N-oxides in the hemocytes of the marine bivalve Mytilus galloprovincialis. PLoS One 7:e36937

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  • Cooper EL (2010) Evolution of immune systems from self/not self to danger to artificial immune systems (AIS). Phys Life Rev 7:55–78

    PubMed  CrossRef  Google Scholar 

  • Csaba N, Sanchez A, Alonso MJ (2006) PLGA:poloxamer and PLGA:poloxamine blend nanostructures as carriers for nasal gene delivery. J Control Release 113:164–172

    CAS  PubMed  CrossRef  Google Scholar 

  • Cui Z, Mumper RJ (2002) Coating of cationized protein on engineered nanoparticles results in enhanced immune responses. Int J Pharm 238:229–239

    CAS  PubMed  CrossRef  Google Scholar 

  • Cui Z, Patel J, Tuzova M et al (2004) Strong T cell type-1 immune responses to HIV-1 Tat (1–72) protein-coated nanoparticles. Vaccine 22:2631–2640

    CAS  PubMed  CrossRef  Google Scholar 

  • Cui Z, Han SJ, Vangasseri DP et al (2005) Immunostimulation mechanism of LPD nanoparticle as a vaccine carrier. Mol Pharm 2:22–28

    CAS  PubMed  CrossRef  Google Scholar 

  • Cukalevski R, Lundqvist M, Oslakovic C et al (2011) Structural changes in apolipoproteins bound to nanoparticles. Langmuir 27:14360–14369

    CAS  PubMed  CrossRef  Google Scholar 

  • Cuna M, Alonso-Sandel M, Remunan-Lopez C et al (2006) Development of phosphorylated glucomannan-coated chitosan nanoparticles as nanocarriers for protein delivery. J Nanosci Nanotechnol 6:2887–2895

    CAS  PubMed  CrossRef  Google Scholar 

  • Demento SL, Eisenbarth SC, Foellmer HG et al (2009) Inflammasome-activating nanoparticles as modular systems for optimizing vaccine efficacy. Vaccine 27:3013–3021

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  • Demoy M, Andreux JP, Weingarten C et al (1999) In vitro evaluation of nanoparticles spleen capture. Life Sci 64:1329–1337

    CAS  PubMed  CrossRef  Google Scholar 

  • Deng ZJ, Liang M, Toth I et al (2012) Plasma protein binding of positively and negatively charged polymer-coated gold nanoparticles elicits different biological responses. Nanotoxicology 7:314–322

    PubMed  CrossRef  CAS  Google Scholar 

  • Dobrovolskaia MA, McNeil SE (2007) Immunological properties of engineered nanomaterials. Nat Nanotechnol 2:469–478

    CAS  PubMed  CrossRef  Google Scholar 

  • Dobrovolskaia MA, McNeil SE (2013) Understanding the correlation between in vitro and in vivo immunotoxicity tests for nanomedicines. J Control Release 172:456–466

    CAS  PubMed  CrossRef  Google Scholar 

  • Dobrovolskaia MA, Aggarwal P, Hall JB et al (2008) Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol Pharm 5:487–495

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  • Dobrovolskaia MA, Germolec DR, Weaver J (2009) Evaluation of nanoparticle immunotoxicity. Nat Nanotechnol 4:411–414

    CAS  PubMed  CrossRef  Google Scholar 

  • Dobrovolskaia MA, Neun BW, Clogston JD et al (2013) Choice of method for endotoxin detection depends on nanoformulation. Nanomedicine (Lond) 9(12):1847–56. [Epub ahead of print]

    Google Scholar 

  • Dostert C, Pétrilli V, Van Bruggen R et al (2008) Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320:674–677

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  • Eisenbarth SC, Colegio OR, O’Connor W et al (2008) Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453:1122–1126

    CAS  PubMed  CrossRef  Google Scholar 

  • El Solh AA, Ramadan H (2006) Overview of respiratory failure in older adults. J Intensive Care Med 21:345–351

    PubMed  CrossRef  Google Scholar 

  • El-Temsah YS, Joner EJ (2012) Ecotoxicological effects on earthworms of fresh and aged nanosized zero-valent iron (nZVI) in soil. Chemosphere 89:76–82

    CAS  PubMed  CrossRef  Google Scholar 

  • Esmaeili F, Ghahremani MH, Esmaeili B et al (2008) PLGA nanoparticles of different surface properties: preparation and evaluation of their body distribution. Int J Pharm 349:249–255

    CAS  PubMed  CrossRef  Google Scholar 

  • Fang C, Shi B, Pei YY et al (2006) In vivo tumor targeting of tumor necrosis factor alpha-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size. Eur J Pharm Sci 27:27–36

    CAS  PubMed  CrossRef  Google Scholar 

  • Ferrari M (2008) Nanogeometry: beyond drug delivery. Nat Nanotechnol 3:131–132

    CAS  PubMed  CrossRef  Google Scholar 

  • Fleischer CC, Payne CK (2012) Nanoparticle surface charge mediates the cellular receptors used by protein-nanoparticle complexes. J Phys Chem B 116:8901–8907

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  • Foged C, Brodin B, Frokjaer S et al (2005) Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int J Pharm 298:315–322

    CAS  PubMed  CrossRef  Google Scholar 

  • Gaucher G, Asahina K, Wang J et al (2009) Effect of poly(N-vinyl-pyrrolidone)-block-poly(D, L-lactide) as coating agent on the opsonization, phagocytosis, and pharmacokinetics of biodegradable nanoparticles. Biomacromolecules 10:408–416

    CAS  PubMed  CrossRef  Google Scholar 

  • Goppert TM, Muller RH (2005) Protein adsorption patterns on poloxamer- and poloxamine-stabilized solid lipid nanoparticles (SLN). Eur J Pharm Biopharm 60:361–372

    PubMed  CrossRef  CAS  Google Scholar 

  • Hall JB, Dobrovolskaia MA, Patri AK et al (2007) Characterization of nanoparticles for therapeutics. Nanomedicine 2:789–803

    CAS  PubMed  CrossRef  Google Scholar 

  • Hamad I, Hunter AC, Rutt KJ et al (2008) Complement activation by PEGylated single-walled carbon nanotubes is independent of C1q and alternative pathway turnover. Mol Immunol 45:3797–3803

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  • Hamilton RF Jr, Buford M, Xiang C et al (2012) NLRP3 inflammasome activation in murine alveolar macrophages and related lung pathology is associated with MWCNT nickel contamination. Inhal Toxicol 24:995–1008

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  • Hirahara K, Poholek A, Vahedi G et al (2013) Mechanisms underlying helper T cell plasticity: implications for immune-mediated disease. J Allergy Clin Immunol 131:1276–1287

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  • Hornung V, Bauernfeind F, Halle A et al (2008) Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9:847–856

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  • Ishida T, Wang X, Shimizu T et al (2007) PEGylated liposomes elicit an anti-PEG IgM response in a T cell-independent manner. J Control Release 122:349–355

    CAS  PubMed  CrossRef  Google Scholar 

  • Judge A, McClintock K, Phelps JR et al (2006) Hypersensitivity and loss of disease site targeting caused by antibody responses to PEGylated liposomes. Mol Ther 13:328–337

    CAS  PubMed  CrossRef  Google Scholar 

  • Kagan VE, Konduru NV, Feng W et al (2010) Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat Nanotechnol 5:354–359

    CAS  PubMed  CrossRef  Google Scholar 

  • Kettiger H, Schipanski A, Wick P et al (2013) Engineered nanomaterial uptake and tissue distribution: from cell to organism. Int J Nanomedicine 8:3255–3269

    PubMed Central  PubMed  Google Scholar 

  • Kim TH, Nah JW, Cho MH et al (2006) Receptor-mediated gene delivery into antigen presenting cells using mannosylated chitosan/DNA nanoparticles. J Nanosci Nanotechnol 6:2796–2803

    CAS  PubMed  CrossRef  Google Scholar 

  • Koide H, Asai T, Hatanaka K et al (2010) T cell-independent B cell response is responsible for ABC phenomenon induced by repeated injection of PEGylated liposomes. Int J Pharm 392:218–223

    CAS  PubMed  CrossRef  Google Scholar 

  • Kotchey GP, Hasan SA, Kaparlov AA et al (2012) A natural vanishing act: the enzyme-catalyzed degradation of carbon nanomaterials. Acc Chem Res 45:1770–1781

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  • Kreuter J (1995) Nanoparticles as adjuvants for vaccines. Pharm Biotechnol 6:463–472

    CAS  PubMed  CrossRef  Google Scholar 

  • Kvell K, Cooper EL, Engelmann P et al (2007) Blurring borders: innate immunity with adaptive features. Clin Dev Immunol 2007:83671

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  • Latz E, Xiao TS, Stutz A (2013) Activation and regulation of the inflammasomes. Nat Rev Immunol 13:397–411

    CAS  PubMed  CrossRef  Google Scholar 

  • Lee SC, Parthasarathy R, Botwin K et al (2004) Biochemical and immunological properties of cytokines conjugated to dendritic polymers. Biomed Microdevices 6:191–202

    CAS  PubMed  CrossRef  Google Scholar 

  • Li LZ, Zhou DM, Peijnenburg WJ et al (2011) Toxicity of zinc oxide nanoparticles in the earthworm, Eisenia fetida and subcellular fractionation of Zn. Environ Int 37:1098–1104

    CAS  PubMed  CrossRef  Google Scholar 

  • Li R, Wang X, Ji Z et al (2013) Surface charge and cellular processing of covalently functionalized multiwall carbon nanotubes determine pulmonary toxicity. ACS Nano 7:2352–2368

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  • Lieder R, Petersen PH, Sigurjónsson OE (2013) Endotoxins—the invisible companion in biomaterials research. Tissue Eng Part B Rev 19:391–402

    CAS  PubMed  CrossRef  Google Scholar 

  • Ling WL, Biro A, Bally I et al (2011) Proteins of the innate immune system crystallize on carbon nanotubes but are not activated. ACS Nano 5:730–737

    CAS  PubMed  CrossRef  Google Scholar 

  • Lunov O, Syrovets T, Loos C et al (2011) Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line. ACS Nano 5:1657–1669

    CAS  PubMed  CrossRef  Google Scholar 

  • Lutsiak ME, Kwon GS, Samuel J (2006) Biodegradable nanoparticle delivery of a Th2-biased peptide for induction of Th1 immune responses. J Pharm Pharmacol 58:739–747

    CAS  PubMed  CrossRef  Google Scholar 

  • Mahon E, Salvati A, Baldelli Bombelli F et al (2012) Designing the nanoparticle-biomolecule interface for “targeting and therapeutic delivery”. J Control Release 161:164–174

    CAS  PubMed  CrossRef  Google Scholar 

  • Manolova V, Flace A, Bauer M et al (2008) Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol 38:1404–1413

    CAS  PubMed  CrossRef  Google Scholar 

  • Marsh EK, May RC (2012) Caenorhabditis elegans, a model organism for investigating immunity. Appl Environ Microbiol 78:2075–2081

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  • Martinon F, Pétrilli V, Mayor A et al (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440:237–241

    CAS  PubMed  CrossRef  Google Scholar 

  • Masalova OV, Shepelev AV, Atanadze SN et al (1999) Immunostimulating effect of water-soluble fullerene derivatives—perspective adjuvants for a new generation of vaccine. Dokl Akad Nauk 369:411–413

    CAS  PubMed  Google Scholar 

  • Meng H, Yang S, Li Z et al (2011) Aspect ratio determines the quantity of mesoporous silica nanoparticle uptake by a small GTPase-dependent macropinocytosis mechanism. ACS Nano 5:4434–4447

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  • Mitchell LA, Gao J, Wal RV et al (2007) Pulmonary and systemic immune response to inhaled multiwalled carbon nanotubes. Toxicol Sci 100:203–214

    CAS  PubMed  CrossRef  Google Scholar 

  • Mitchell LA, Lauer FT, Burchiel SW et al (2009) Mechanisms for how inhaled multiwalled carbon nanotubes suppress systemic immune function in mice. Nat Nanotechnol 4:451–456

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  • Moghimi SM, Andersen AJ, Ahmadvand D et al (2011) Material properties in complement activation. Adv Drug Deliv Rev 63:1000–1007

    CAS  PubMed  CrossRef  Google Scholar 

  • Mohamed BM, Verma NK, Davies AM et al (2012) Citrullination of proteins: a common post-translational modification pathway induced by different nanoparticles in vitro and in vivo. Nanomedicine (Lond) 7:1181–1195

    CAS  CrossRef  Google Scholar 

  • Monopoli MP, Pitek AS, Lynch I et al (2013) Formation and characterization of the nanoparticle-protein corona. Methods Mol Biol 1025:137–155

    CAS  PubMed  CrossRef  Google Scholar 

  • Mottram PL, Leong D, Crimeen-Irwin B et al (2007) Type 1 and 2 immunity following vaccination is influenced by nanoparticle size: formulation of a model vaccine for respiratory syncytial virus. Mol Pharm 4:73–84

    CAS  PubMed  CrossRef  Google Scholar 

  • Moyano DF, Goldsmith M, Solfiell DJ et al (2012) Nanoparticle hydrophobicity dictates immune response. J Am Chem Soc 134:3965–3967

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  • Muller RH, Maassen S, Weyhers H et al (1996) Phagocytic uptake and cytotoxicity of solid lipid nanoparticles (SLN) sterically stabilized with poloxamine 908 and poloxamer 407. J Drug Target 4:161–170

    CAS  PubMed  CrossRef  Google Scholar 

  • Murphy KM (ed) (2011) Janeway’s immunobiology, 8th edn. Garland Science, New York

    Google Scholar 

  • Nakayamada S, Takahashi H, Kanno Y et al (2012) Helper T cell diversity and plasticity. Curr Opin Immunol 24:297–302

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  • Oostingh GJ, Casals E, Italiani P et al (2011) Problems and challenges in the development and validation of human cell-based assays to determine nanoparticle-induced immunomodulatory effects. Part Fibre Toxicol 8:8

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  • Paciotti GF, Myer L, Weinreich D et al (2004) Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv 11:169–183

    CAS  PubMed  CrossRef  Google Scholar 

  • Palomäki J, Välimäki E, Sund J et al (2011) Long, needle-like carbon nanotubes and asbestos activate the NLRP3 inflammasome through a similar mechanism. ACS Nano 5:6861–6870

    PubMed  CrossRef  CAS  Google Scholar 

  • Papayannopoulos V, Zychlinsky A (2009) NETs: a new strategy for using old weapons. Trends Immunol 30:513–521

    CAS  PubMed  CrossRef  Google Scholar 

  • Peer D (2012) Immunotoxicity derived from manipulating leukocytes with lipid-based nanoparticles. Adv Drug Deliv Rev 64:1738–1748

    CAS  PubMed  CrossRef  Google Scholar 

  • Pulskamp K, Diabate S, Krug HF (2007) Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 168:58–74

    CAS  PubMed  CrossRef  Google Scholar 

  • Rajananthanan P, Attard GS, Sheikh NA et al (1999) Evaluation of novel aggregate structures as adjuvants: composition, toxicity studies and humoral responses. Vaccine 17:715–730

    CAS  PubMed  CrossRef  Google Scholar 

  • Reddy ST, van der Vlies AJ, Simeoni E et al (2007) Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat Biotechnol 25:1159–1164

    CAS  PubMed  CrossRef  Google Scholar 

  • Redhead HM, Davis SS, Illum L (2001) Drug delivery in poly(lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: in vitro characterisation and in vivo evaluation. J Control Release 70:353–363

    CAS  PubMed  CrossRef  Google Scholar 

  • Rettig L, Haen SP, Bittermann AG et al (2010) Particle size and activation threshold: a new dimension of danger signaling. Blood 115:4533–4541

    CAS  PubMed  CrossRef  Google Scholar 

  • Roberts JC, Bhalgat MK, Zera RT (1996) Preliminary biological evaluation of polyamidoamine (PAMAM) Starburst dendrimers. J Biomed Mater Res 30:53–65

    CAS  PubMed  CrossRef  Google Scholar 

  • Roser M, Fischer D, Kissel T (1998) Surface-modified biodegradable albumin nano and microspheres. II: effect of surface charges on in vitro phagocytosis and biodistribution in rats. Eur J Pharm Biopharm 46:255–263

    CAS  PubMed  CrossRef  Google Scholar 

  • Salvador-Morales C, Flahaut E, Sim E et al (2006) Complement activation and protein adsorption by carbon nanotubes. Mol Immunol 43:193–201

    CAS  PubMed  CrossRef  Google Scholar 

  • Seok J, Warren HS, Cuenca AG et al (2013) Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci USA 110:3507

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  • Sharma A, Muresanu DF, Patnail R et al (2013) Size- and age-dependent neurotoxicity of engineered metal nanoparticles in rats. Mol Neurobiol 48:386–396

    CAS  PubMed  CrossRef  Google Scholar 

  • Smulders S, Kaiser JP, Zuin S et al (2012) Contamination of nanoparticles by endotoxin: evaluation of different test methods. Part Fibre Toxicol 9:41

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  • Söderäll K (2010) Invertebrate immunity. Advances in experimental medicine and biology. Landes Bioscience and Springer Science + Business Media, LCC, New York, p 314

    Google Scholar 

  • Stern ST, McNeil SE (2008) Nanotechnology safety concerns revisited. Toxicol Sci 101:4–21

    CAS  PubMed  CrossRef  Google Scholar 

  • Szebeni J, Alving CR, Rosivall L et al (2007) Animal models of complement-mediated hypersensitivity reactions to liposomes and other lipid-based nanoparticles. J Liposome Res 17:107–117

    CAS  PubMed  CrossRef  Google Scholar 

  • Tan Y, Li S, Pitt BR et al (1999) The inhibitory role of CpG immunostimulatory motifs in cationic lipid vector-mediated transgene expression in vivo. Hum Gene Ther 10:2153–2161

    CAS  PubMed  CrossRef  Google Scholar 

  • Thiele L, Rothen-Rutishauser B, Jilek S et al (2001) Evaluation of particle uptake in human blood monocyte-derived cells in vitro. Does phagocytosis activity of dendritic cells measure up with macrophages? J Control Release 76:59–71

    CAS  PubMed  CrossRef  Google Scholar 

  • Tomii A, Masugi F (1991) Production of anti-platelet-activating factor antibodies by the use of colloidal gold as carrier. Jpn J Med Sci Biol 44:75–80

    CAS  PubMed  CrossRef  Google Scholar 

  • Unrine JM, Hunyadi SE, Tsyusko OV et al (2010) Evidence for bioavailability of Au nanoparticles from soil and biodistribution within earthworms (Eisenia fetida). Environ Sci Technol 44:830813

    CrossRef  CAS  Google Scholar 

  • van Zijverden M, Granum B (2000) Adjuvant activity of particulate pollutants in different mouse models. Toxicology 152:69–77

    PubMed  CrossRef  Google Scholar 

  • Vetten MA, Yah CS, Singh T et al (2014) Challenges facing sterilization and depyrogenation of nanoparticles: effects on structural stability and biomedical applications. Nanomedicine 10(7):1391–1399

    CAS  PubMed  CrossRef  Google Scholar 

  • Wang X, Ishida T, Kiwada H (2007) Anti-PEG IgM elicited by injection of liposomes is involved in the enhanced blood clearance of a subsequent dose of PEGylated liposomes. J Control Release 119:236–244

    CAS  PubMed  CrossRef  Google Scholar 

  • Whitfield Aslund ML, McShane H, Simpson MJ et al (2012) Earthworm sublethal responses to titanium dioxide nanomaterial in soil detected by (1)H NMR metabolomics. Environ Sci Technol 46:1111–1118

    CAS  PubMed  CrossRef  Google Scholar 

  • Xiang SD, Scholzen A, Minigo G et al (2006) Pathogen recognition and development of particulate vaccines: does size matter? Methods 40:1–9

    CAS  PubMed  CrossRef  Google Scholar 

  • Xiang SD, Fuchsberger M, Karlson TDL et al (2012) Nanoparticles, immune modulation and vaccine delivery. In: Yarmush ML, Shi D (eds) Frontiers in nanobiomedical research. World Scientific Publishing, Singapore

    Google Scholar 

  • Yazdi AS, Guarda G, Riteau N et al (2010) Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1α and IL-1β. Proc Natl Acad Sci U S A 107:19449–19454

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  • Zahr AS, Davis CA, Pishko MV (2006) Macrophage uptake of core-shell nanoparticles surface modified with poly(ethylene glycol). Langmuir 22:8178–8185

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Acknowledgements

This work was supported by the EU FP7 grant HUMUNITY (PITN-GA-2012-316383) and by the grant 2011–2114 of Fondazione Cariplo, Milano, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Boraschi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer-Verlag Wien

About this chapter

Cite this chapter

Italiani, P., Boraschi, D. (2016). Engineered Nanoparticles and the Immune System: Interaction and Consequences. In: Esser, C. (eds) Environmental Influences on the Immune System. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1890-0_9

Download citation