Skip to main content

Molecular Pathways and Animal Models of Hypoplastic Left Heart Syndrome

  • Chapter
Congenital Heart Diseases: The Broken Heart

Abstracts

Hypoplastic left heart syndrome (HLHS) is a rare and severe defect in which the structures of the left side of the heart are severely underdeveloped. Only a very small minority of HLHS cases can currently be explained. This review summarizes how growth of the left-sided structures of the heart is initiated very early during development and which mechanisms could be defective in HLHS. Numerous cascades driving development of ventricular cardiomyocytes have been described and are put into perspective. Current genetic, epigenetic, and hemodynamic concepts in HLHS pathogenesis are discussed in the context of both animal and human models of impaired growth of left-sided structures of the heart. Understanding the contribution of these factors may be crucial for stratification of therapeutic interventions in HLHS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hinton RB, Martin LJ, Tabangin ME et al (2007) Hypoplastic left heart syndrome is heritable. J Am Coll Cardiol 50:1590–1595

    Article  PubMed  Google Scholar 

  2. Hinton RB, Martin LJ, Rame-Gowda S et al (2009) Hypoplastic left heart syndrome links to chromosomes 10q and 6q and is genetically related to bicuspid aortic valve. J Am Coll Cardiol 53:1065–1071

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. McBride KL, Zender GA, Fitzgerald-Butt SM et al (2009) Linkage analysis of left ventricular outflow tract malformations (aortic valve stenosis, coarctation of the aorta, and hypoplastic left heart syndrome). Eur J Hum Genet 17:811–819

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Allan LD, Sharland G, Tynan MJ (1989) The natural history of the hypoplastic left heart syndrome. Int J Cardiol 25:341–343

    Article  CAS  PubMed  Google Scholar 

  5. Sedmera D, Hu N, Weiss KM et al (2002) Cellular changes in experimental left heart hypoplasia. Anat Rec 267:137–145

    Article  PubMed  Google Scholar 

  6. Rychter Z, Rychterová V, Lemez L (1979) Formation of the heart loop and proliferation structure of its wall as a base for ventricular septation. Herz 4:86–90

    CAS  PubMed  Google Scholar 

  7. Lawson KA, Pedersen RA (1987) Cell fate, morphogenetic movement and population kinetics of embryonic endoderm at the time of germ layer formation in the mouse. Development 101:627–652

    CAS  PubMed  Google Scholar 

  8. Saga Y, Miyagawa-Tomita S, Takagi A et al (1999) MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube. Development 126:3437–3447

    CAS  PubMed  Google Scholar 

  9. Lescroart F, Chabab S, Lin X et al (2014) Early lineage restriction in temporally distinct populations of Mesp1 progenitors during mammalian heart development. Nat Cell Biol 16:829–840

    Article  CAS  PubMed  Google Scholar 

  10. Costello I, Pimeisl I-M, Dräger S et al (2011) The T-box transcription factor Eomesodermin acts upstream of Mesp1 to specify cardiac mesoderm during mouse gastrulation. Nat Cell Biol 13:1084–1091

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Shenje LT, Andersen P, Uosaki H et al (2014) Precardiac deletion of Numb and Numblike reveals renewal of cardiac progenitors. Elife 3:e02164

    Article  PubMed Central  PubMed  Google Scholar 

  12. Zaffran S, Kelly RG, Meilhac SM et al (2004) Right ventricular myocardium derives from the anterior heart field. Circ Res 95:261–268

    Article  CAS  PubMed  Google Scholar 

  13. Meilhac SM, Esner M, Kelly RG et al (2004) The clonal origin of myocardial cells in different regions of the embryonic mouse heart. Dev Cell 6:685–698

    Article  CAS  PubMed  Google Scholar 

  14. Buckingham M, Meilhac S, Zaffran S (2005) Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 6:826–835

    Article  CAS  PubMed  Google Scholar 

  15. Galli D, Domínguez JN, Zaffran S et al (2008) Atrial myocardium derives from the posterior region of the second heart field, which acquires left-right identity as Pitx2c is expressed. Development 135:1157–1167

    Article  CAS  PubMed  Google Scholar 

  16. Christoffels VM, Burch JBE, Moorman AFM (2004) Architectural plan for the heart: early patterning and delineation of the chambers and the nodes. Trends Cardiovasc Med 14:301–307

    Article  PubMed  Google Scholar 

  17. Moorman AFM, Christoffels VM (2003) Cardiac chamber formation: development, genes, and evolution. Physiol Rev 83:1223–1267

    Article  CAS  PubMed  Google Scholar 

  18. van den Berg G, Moorman AFM (2009) Concepts of cardiac development in retrospect. Pediatr Cardiol 30:580–587

    Article  PubMed Central  PubMed  Google Scholar 

  19. Sissman NJ (1966) Cell multiplication rates during development of the primitive cardiac tube in the chick embryo. Nature 210:504–507

    Article  CAS  PubMed  Google Scholar 

  20. Soufan AT, van den Berg G, Ruijter JM et al (2006) Regionalized sequence of myocardial cell growth and proliferation characterizes early chamber formation. Circ Res 99:545–552

    Article  CAS  PubMed  Google Scholar 

  21. Moorman AF, Schumacher CA, de Boer PA et al (2000) Presence of functional sarcoplasmic reticulum in the developing heart and its confinement to chamber myocardium. Dev Biol 223:279–290

    Article  CAS  PubMed  Google Scholar 

  22. Christoffels VM, Hoogaars WMH, Tessari A et al (2004) T-box transcription factor Tbx2 represses differentiation and formation of the cardiac chambers. Dev Dyn 229:763–770

    Article  CAS  PubMed  Google Scholar 

  23. Li JM, Poolman RA, Brooks G (1998) Role of G1 phase cyclins and cyclin-dependent kinases during cardiomyocyte hypertrophic growth in rats. Am J Physiol 275:H814–H822

    CAS  PubMed  Google Scholar 

  24. Harmelink C, Peng Y, DeBenedittis P et al (2013) Myocardial Mycn is essential for mouse ventricular wall morphogenesis. Dev Biol 373:53–63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. MacLellan WR, Garcia A, Oh H et al (2005) Overlapping roles of pocket proteins in the myocardium are unmasked by germ line deletion of p130 plus heart-specific deletion of Rb. Mol Cell Biol 25:2486–2497

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Li F, Wang X, Capasso JM, Gerdes AM (1996) Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol 28:1737–1746

    Article  CAS  PubMed  Google Scholar 

  27. Siddiqi S, Sussman MA (2014) The heart: mostly postmitotic or mostly premitotic? Myocyte cell cycle, senescence, and quiescence. Can J Cardiol 30:1270–1278

    Article  PubMed Central  PubMed  Google Scholar 

  28. Lopez-Sanchez C, Garcia-Martinez V, Schoenwolf GC (2001) Localization of cells of the prospective neural plate, heart and somites within the primitive streak and epiblast of avian embryos at intermediate primitive-streak stages. Cells Tissues Organs 169:334–346

    Article  CAS  PubMed  Google Scholar 

  29. Auman HJ, Coleman H, Riley HE et al (2007) Functional modulation of cardiac form through regionally confined cell shape changes. PLoS Biol 5:e53

    Article  PubMed Central  PubMed  Google Scholar 

  30. Lin Y-F, Swinburne I, Yelon D (2012) Multiple influences of blood flow on cardiomyocyte hypertrophy in the embryonic zebrafish heart. Dev Biol 362:242–253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Dietrich A-C, Lombardo VA, Abdelilah-Seyfried S (2014) Blood flow and Bmp signaling control endocardial chamber morphogenesis. Dev Cell 30:367–377

    Article  CAS  PubMed  Google Scholar 

  32. Neuhaus H, Rosen V, Thies RS (1999) Heart specific expression of mouse BMP-10 a novel member of the TGF-beta superfamily. Mech Dev 80:181–184

    Article  CAS  PubMed  Google Scholar 

  33. Chen H, Shi S, Acosta L et al (2004) BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development 131:2219–2231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Di Stefano V, Giacca M, Capogrossi MC et al (2011) Knockdown of cyclin-dependent kinase inhibitors induces cardiomyocyte re-entry in the cell cycle. J Biol Chem 286(10):8644–8654

    Article  PubMed Central  PubMed  Google Scholar 

  35. Ferdous A, Caprioli A, Iacovino M et al (2009) Nkx2-5 transactivates the Ets-related protein 71 gene and specifies an endothelial/endocardial fate in the developing embryo. Proc Natl Acad Sci U S A 106:814–819

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Rasmussen TL, Kweon J, Diekmann MA et al (2011) ER71 directs mesodermal fate decisions during embryogenesis. Development 138:4801–4812

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Saga Y (2000) Mesp1 expression is the earliest sign of cardiovascular development. Trends Cardiovasc Med 10:345–352

    Article  CAS  PubMed  Google Scholar 

  38. Kitajima S, Takagi A, Inoue T (2000) MesP1 and MesP2 are essential for the development of cardiac mesoderm. Development 127:3215–3226

    CAS  PubMed  Google Scholar 

  39. Harvey RP (1996) NK-2 homeobox genes and heart development. Dev Biol 178:203–216

    Article  CAS  PubMed  Google Scholar 

  40. Zhang L, Nomura-Kitabayashi A, Sultana N et al (2014) Mesodermal Nkx2.5 is necessary and sufficient for early second heart field development. Dev Biol 390:68–79

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. George V, Colombo S, Targoff KL (2015) An early requirement for nkx2.5 ensures the first and second heart field ventricular identity and cardiac function into adulthood. Dev Biol 400:10–22

    Article  CAS  PubMed  Google Scholar 

  42. Srivastava D, Cserjesi P, Olson EN (1995) A subclass of bHLH proteins required for cardiac morphogenesis. Science 270:1995–1999

    Article  CAS  PubMed  Google Scholar 

  43. Biben C, Harvey RP (1997) Homeodomain factor Nkx2-5 controls left/right asymmetric expression of bHLH gene eHand during murine heart development. Genes Dev 11:1357–1369

    Article  CAS  PubMed  Google Scholar 

  44. Srivastava D, Thomas T, Lin Q et al (1997) Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND. Nat Genet 16:154–160

    Article  CAS  PubMed  Google Scholar 

  45. Thomas T, Yamagishi H, Overbeek PA et al (1998) The bHLH factors, dHAND and eHAND, specify pulmonary and systemic cardiac ventricles independent of left-right sidedness. Dev Biol 196:228–236

    Article  CAS  PubMed  Google Scholar 

  46. Bruneau BG, Bao ZZ, Tanaka M et al (2000) Cardiac expression of the ventricle-specific homeobox gene Irx4 is modulated by Nkx2-5 and dHand. Dev Biol 217:266–277

    Article  CAS  PubMed  Google Scholar 

  47. Bao ZZ, Bruneau BG, Seidman JG et al (1999) Regulation of chamber-specific gene expression in the developing heart by Irx4. Science 283:1161–1164

    Article  CAS  PubMed  Google Scholar 

  48. Garg V, Muth AN, Ransom JF et al (2005) Mutations in NOTCH1 cause aortic valve disease. Nature 437:270–274

    Article  CAS  PubMed  Google Scholar 

  49. McBride KL, Riley MF, Zender GA et al (2008) NOTCH1 mutations in individuals with left ventricular outflow tract malformations reduce ligand-induced signaling. Hum Mol Genet 17:2886–2893

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Riley MF, McBride KL, Cole SE (2011) NOTCH1 missense alleles associated with left ventricular outflow tract defects exhibit impaired receptor processing and defective EMT. Biochim Biophys Acta 1812:121–129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Iascone M, Ciccone R, Galletti L et al (2012) Identification of de novo mutations and rare variants in hypoplastic left heart syndrome. Clin Genet 81:542–554

    Article  CAS  PubMed  Google Scholar 

  52. Grego-Bessa J, Luna-Zurita L, del Monte G et al (2007) Notch signaling is essential for ventricular chamber development. Dev Cell 12:415–429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Chen H, Zhang W, Sun X et al (2013) Fkbp1a controls ventricular myocardium trabeculation and compaction by regulating endocardial Notch1 activity. Development 140:1946–1957

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Maruyama M, Li B-Y, Chen H et al (2011) FKBP12 is a critical regulator of the heart rhythm and the cardiac voltage-gated sodium current in mice. Circ Res 108:1042–1052

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Shou W, Aghdasi B, Armstrong DL et al (1998) Cardiac defects and altered ryanodine receptor function in mice lacking FKBP12. Nature 391:489–492

    Article  CAS  PubMed  Google Scholar 

  56. Gambetta K, Al-Ahdab MK, Ilbawi MN et al (2008) Transcription repression and blocks in cell cycle progression in hypoplastic left heart syndrome. Am J Physiol Heart Circ Physiol 294:H2268–H2275

    Article  CAS  PubMed  Google Scholar 

  57. Banerjee I, Carrion K, Serrano R et al (2015) Cyclic stretch of embryonic cardiomyocytes increases proliferation, growth, and expression while repressing Tgf-β signaling. J Mol Cell Cardiol 79:133–144

    Article  CAS  PubMed  Google Scholar 

  58. Park CY, Pierce SA, von Drehle M et al (2010) skNAC, a Smyd1-interacting transcription factor, is involved in cardiac development and skeletal muscle growth and regeneration. Proc Natl Acad Sci U S A 107:20750–20755

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Eghtesady P (2006) Hypoplastic left heart syndrome: rheumatic heart disease of the fetus? Med Hypotheses 66:554–565

    Article  PubMed  Google Scholar 

  60. Cole CR, Yutzey KE, Brar AK et al (2014) Congenital heart disease linked to maternal autoimmunity against cardiac myosin. J Immunol 192:4074–4082

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  62. Kobayashi J, Yoshida M, Tarui S et al (2014) Directed differentiation of patient-specific induced pluripotent stem cells identifies the transcriptional repression and epigenetic modification of NKX2-5, HAND1, and NOTCH1 in hypoplastic left heart syndrome. PLoS One 9:e102796

    Article  PubMed Central  PubMed  Google Scholar 

  63. Jiang Y, Habibollah S, Tilgner K et al (2014) An induced pluripotent stem cell model of hypoplastic left heart syndrome (HLHS) reveals multiple expression and functional differences in HLHS-derived cardiac myocytes. Stem Cells Transl Med 3:416–423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Hove JR, Köster RW, Forouhar AS et al (2003) Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421:172–177

    Article  CAS  PubMed  Google Scholar 

  65. Banjo T, Grajcarek J, Yoshino D et al (2013) Haemodynamically dependent valvulogenesis of zebrafish heart is mediated by flow-dependent expression of miR-21. Nat Commun 4:1978

    Article  PubMed Central  PubMed  Google Scholar 

  66. Kikuchi K, Holdway JE, Werdich AA et al (2010) Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature 464:601–605

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Jensen B, Wang T, Christoffels VM et al (2013) Evolution and development of the building plan of the vertebrate heart. Biochim Biophys Acta 1833:783–794

    Article  CAS  PubMed  Google Scholar 

  68. Harh JY, Paul MH, Gallen WJ et al (1973) Experimental production of hypoplastic left heart syndrome in the chick embryo. Am J Cardiol 31:51–56

    Article  CAS  PubMed  Google Scholar 

  69. deAlmeida A, McQuinn T, Sedmera D (2007) Increased ventricular preload is compensated by myocyte proliferation in normal and hypoplastic fetal chick left ventricle. Circ Res 100:1363–1370

    Article  CAS  PubMed  Google Scholar 

  70. Freud LR, McElhinney DB, Marshall AC et al (2014) Fetal aortic valvuloplasty for evolving hypoplastic left heart syndrome: postnatal outcomes of the first 100 patients. Circulation 130:638–645

    Article  PubMed Central  PubMed  Google Scholar 

  71. White JK, Gerdin A-K, Karp NA et al (2013) Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes. Cell 154:452–464

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Liu X, Saeed S, Li Y et al (2012) Abstract 19570: a multigenic etiology of hypoplastic left heart syndrome: an analysis based on three novel mutant mouse models of hyoplastic left heart syndrome. Circulation 126:A19570

    Google Scholar 

  73. McFadden DG, Barbosa AC, Richardson JA et al (2005) The Hand1 and Hand2 transcription factors regulate expansion of the embryonic cardiac ventricles in a gene dosage-dependent manner. Development 132:189–201

    Article  CAS  PubMed  Google Scholar 

  74. Blake JA, Bult CJ, Eppig JT et al (2014) The Mouse Genome Database: integration of and access to knowledge about the laboratory mouse. Nucleic Acids Res 42:D810–D817

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Zhou H-M, Weskamp G, Chesneau V et al (2004) Essential role for ADAM19 in cardiovascular morphogenesis. Mol Cell Biol 24:96–104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Laforest B, Andelfinger G, Nemer M (2011) “Loss of Gata5 in mice leads to bicuspid aortic valve. J Clin Invest 121(7):2876–2887

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Biben C, Weber R, Kesteven S et al (2000) Cardiac septal and valvular dysmorphogenesis in mice heterozygous for mutations in the homeobox gene Nkx2-5. Circ Res 87:888–895

    Article  CAS  PubMed  Google Scholar 

  78. Chen B, Bronson RT, Klaman LD et al (2000) Mice mutant for Egfr and Shp2 have defective cardiac semilunar valvulogenesis. Nat Genet 24:296–299

    Article  CAS  PubMed  Google Scholar 

  79. Lee TC, Zhao YD, Courtman DW et al (2000) Abnormal aortic valve development in mice lacking endothelial nitric oxide synthase. Circulation 101:2345–2348

    Article  CAS  PubMed  Google Scholar 

  80. Fishman NH, Hof RB, Rudolph AM et al (1978) Models of congenital heart disease in fetal lambs. Circulation 58:354–364

    Article  CAS  PubMed  Google Scholar 

  81. Lev M (1952) Pathologic anatomy and interrelationship of hypoplasia of the aortic tract complexes. Lab Invest 1:61–70

    CAS  PubMed  Google Scholar 

  82. Noonan JA, Nadas AS (1958) The hypoplastic left heart syndrome; an analysis of 101 cases. Pediatr Clin North Am 5:1029–1056

    CAS  PubMed  Google Scholar 

  83. Norwood WI, Lang P, Hansen DD (1983) Physiologic repair of aortic atresia-hypoplastic left heart syndrome. N Engl J Med 308:23–26

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

GA is funded by the Fonds de Recherche en Santé du Québec, the Canadian Institutes of Health Research, Foundation Nussia and André Aisenstadt, Fondation GO and Fondation Leducq. He holds the Banque Nationale Research Chair in Cardiovascular Genetics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor U. Andelfinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Wien

About this chapter

Cite this chapter

Wünnemann, F., Andelfinger, G.U. (2016). Molecular Pathways and Animal Models of Hypoplastic Left Heart Syndrome. In: Rickert-Sperling, S., Kelly, R., Driscoll, D. (eds) Congenital Heart Diseases: The Broken Heart. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1883-2_57

Download citation

Publish with us

Policies and ethics