Skip to main content

Molecular Pathways and Animal Models of Coronary Artery Anomalies

  • Chapter
Congenital Heart Diseases: The Broken Heart

Abstract

The coronary vascular system is a sophisticated, highly patterned anatomical entity, and therefore a wide range of congenital malformations of the coronary vasculature has been described. Despite the clinical interest of congenital coronary artery anomalies (CCA), very few attempts have been made to relate specific embryonic developmental mechanisms to the congenital anomalies of these blood vessels. This is so because developmental data about the morphogenesis of the coronary vascular system is derived from complex studies carried out in animals (mostly transgenic mice) and may not be noted by the clinicians who take the care of these patients. We will try to offer embryological explanations for a variety of CCA based on the analysis of multiple animal models for the study of cardiac embryogenesis, and suggest to the reader developmental mechanistic explanations for the pathogenesis of these anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Angelini P (2007) Coronary artery anomalies: an entity in search of an identity. Circulation 115:1296–1305

    PubMed  Google Scholar 

  2. Angelini P (1999) Normal and anomalous coronary arteries in humans. In: Angelini P (ed) Coron. artery anomalies. Lippincott, Williams and Wilkins, Philadelphia, pp 27–150

    Google Scholar 

  3. Red-Horse K, Ueno H, Weissman IL, Krasnow M (2010) Coronary arteries form by developmental reprogramming of venous cells. Nature 464:549–553

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Katz TC, Singh MK, Degenhardt K et al (2012) Distinct compartments of the proepicardial organ give rise to coronary vascular endothelial cells. Dev Cell 22:639–650

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Wu B, Zhang Z, Lui W et al (2012) Endocardial cells form the coronary arteries by angiogenesis through myocardial-endocardial VEGF signaling. Cell 151:1083–1096

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Tian X, Hu T, Zhang H et al (2014) De novo formation of a distinct coronary vascular population in neonatal heart. Science 345(80):90–94

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Waldo K, Willner W, Kirby M (1990) Origin of the proximal coronary artery stems and a review of ventricular vascularization in the chick embryo. Am J Anat 188:109–120

    Article  CAS  PubMed  Google Scholar 

  8. Vrancken Peeters MP, Gittenberger-de Groot AC, Mentink MM et al (1997) Differences in development of coronary arteries and veins. Cardiovasc Res 36:101–110

    Article  CAS  PubMed  Google Scholar 

  9. Roberts W (1986) Major anomalies of coronary arterial origin seen in adulthood. Am Heart J 111:941–963

    Article  CAS  PubMed  Google Scholar 

  10. Marcelo KL, Goldie LC, Hirschi KK (2013) Regulation of endothelial cell differentiation and specification. Circ Res 112:1272–1287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Kirby ML, Waldo KL (1990) Role of neural crest in congenital heart disease. Circulation 82:332–340

    Article  CAS  PubMed  Google Scholar 

  12. Chai Y, Jiang X, Ito Y et al (2000) Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 127:1671–1679

    CAS  PubMed  Google Scholar 

  13. Nishibatake M, Kirby ML, Van Mierop LH (1987) Pathogenesis of persistent truncus arteriosus and dextroposed aorta in the chick embryo after neural crest ablation. Circulation 75:255–264

    Article  CAS  PubMed  Google Scholar 

  14. Epstein JA (1996) Pax3, neural crest and cardiovascular development. Trends Cardiovasc Med 6:255–261

    Article  CAS  PubMed  Google Scholar 

  15. Chang C-P, Stankunas K, Shang C et al (2008) Pbx1 functions in distinct regulatory networks to pattern the great arteries and cardiac outflow tract. Development 135:3577–3586

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. High F, Jain R, Stoller J et al (2009) Murine Jagged1/Notch signaling in the second heart field orchestrates Fgf8 expression and tissue-tissue interactions during outflow tract development. J Clin Invest 119:1986–1996

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Rochais F, Dandonneau M, Mesbah K et al (2009) Hes1 is expressed in the second heart field and is required for outflow tract development. PLoS One 4, e6267

    Article  PubMed Central  PubMed  Google Scholar 

  18. Théveniau-Ruissy M, Dandonneau M, Mesbah K et al (2008) The del22q11.2 candidate gene Tbx1 controls regional outflow tract identity and coronary artery patterning. Circ Res 103:142–148

    Article  PubMed  Google Scholar 

  19. Bajolle F, Zaffran S, Kelly RG et al (2006) Rotation of the myocardial wall of the outflow tract is implicated in the normal positioning of the great arteries. Circ Res 98:421–428

    Article  CAS  PubMed  Google Scholar 

  20. Bajolle F, Zaffran S, Meilhac SM et al (2008) Myocardium at the base of the aorta and pulmonary trunk is prefigured in the outflow tract of the heart and in subdomains of the second heart field. Dev Biol 313:25–34

    Article  CAS  PubMed  Google Scholar 

  21. Costell M, Carmona R, Gustafsson E et al (2002) Hyperplastic conotruncal endocardial cushions and transposition of great arteries in perlecan-null mice. Circ Res 91:158–164

    Article  CAS  PubMed  Google Scholar 

  22. Gonzalez-Iriarte M, Carmona R, Perez-Pomares JM et al (2003) Development of the coronary arteries in a murine model of transposition of great arteries. J Mol Cell Cardiol 35:795–802

    Article  CAS  PubMed  Google Scholar 

  23. Chiu I, Chu S, Wang J et al (1995) Evolution of coronary artery pattern according to short-axis aortopulmonary rotation: a new categorization for complete transposition of the great arteries. J Am Coll Cardiol 26:250–258

    Article  CAS  PubMed  Google Scholar 

  24. Houyel L, Bajolle F, Capderou A et al (2013) The pattern of the coronary arterial orifices in hearts with congenital malformations of the outflow tracts: a marker of rotation of the outflow tract during cardiac development? J Anat 222:349–357

    Article  PubMed Central  PubMed  Google Scholar 

  25. Chen HI, Poduri A, Numi H et al (2014) VEGF-C and aortic cardiomyocytes guide coronary artery stem development. J Clin Invest 124:4899–4914

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Pérez-Pomares JM, de la Pompa JL (2011) Signaling during epicardium and coronary vessel development. Circ Res 109:1429–1442

    Article  PubMed  Google Scholar 

  27. Männer J, Pérez-Pomares JM, Macías D, Muñoz-Chápuli R (2001) The origin, formation and developmental significance of the epicardium: a review. Cells Tissues Organs 169:89–103

    Article  PubMed  Google Scholar 

  28. Peralta M, Steed E, Harlepp S et al (2013) Heartbeat-driven pericardiac fluid forces contribute to epicardium morphogenesis. Curr Biol 23:1726–1735

    Article  CAS  PubMed  Google Scholar 

  29. Wessels A, Pérez-Pomares JM (2004) The epicardium and epicardially derived cells (EPDCs) as cardiac stem cells. Anat Rec A Discov Mol Cell Evol Biol 276:43–57

    Article  CAS  PubMed  Google Scholar 

  30. Pae SH, Dokic D, Dettman RW (2008) Communication between integrin receptors facilitates epicardial cell adhesion and matrix organization. Dev Dyn 237:962–978

    Article  CAS  PubMed  Google Scholar 

  31. Yang JT, Rayburn H, Hynes RO (1995) Cell adhesion events mediated by alpha 4 integrins are essential in placental and cardiac development. Development 121:549–560

    CAS  PubMed  Google Scholar 

  32. Romano LA, Runyan RB (2000) Slug is an essential target of TGFbeta2 signaling in the developing chicken heart. Dev Biol 223:91–102

    Article  CAS  PubMed  Google Scholar 

  33. Takeichi M, Nimura K, Mori M et al (2013) The transcription factors Tbx18 and Wt1 control the epicardial epithelial-mesenchymal transition through bi-directional regulation of Slug in murine primary epicardial cells. PLoS One 8, e57829

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Trembley MA, Velasquez LS, de Mesy Bentley KL, Small EM (2014) Myocardin-related transcription factors control the motility of epicardium-derived cells and the maturation of coronary vessels. Development 142:21–30

    Article  Google Scholar 

  35. Sridurongrit S, Larsson J, Schwarts R et al (2008) Signaling via the Tgf-β type I receptor Alk5 in heart development. Dev Biol 322:208–218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Guadix JA, Ruiz-Villalba A, Lettice L et al (2011) Wt1 controls retinoic acid signalling in embryonic epicardium through transcriptional activation of Raldh2. Development 138:1093–1097

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Von Gise A, Zhou B, Honor LB et al (2011) WT1 regulates epicardial epithelial to mesenchymal transition through β-catenin and retinoic acid signaling pathways. Dev Biol 356:421–431

    Article  Google Scholar 

  38. Pérez-Pomares JM, Phelps A, Sedmerova M et al (2002) Experimental studies on the spatiotemporal expression of WT1 and RALDH2 in the embryonic avian heart: a model for the regulation of myocardial and valvuloseptal development by epicardially derived cells (EPDCs). Dev Biol 247:307–326

    Article  PubMed  Google Scholar 

  39. Eralp I, Lie-Venema H, DeRuiter MC et al (2005) Coronary artery and orifice development is associated with proper timing of epicardial outgrowth and correlated Fas ligand associated apoptosis patterns. Circ Res 96:526–534

    Article  CAS  PubMed  Google Scholar 

  40. Lavine KJ, Ornitz DM (2008) Fibroblast growth factors and Hedgehogs: at the heart of the epicardial signaling center. Trends Genet 24:33–40

    Article  CAS  PubMed  Google Scholar 

  41. Chen THP, Chang T-C, Kang J-O et al (2002) Epicardial induction of fetal cardiomyocyte proliferation via a retinoic acid-inducible trophic factor. Dev Biol 250:198–207

    Article  CAS  PubMed  Google Scholar 

  42. Del Monte G, Casanova JC, Guadix JA et al (2011) Differential Notch signaling in the epicardium is required for cardiac inflow development and coronary vessel morphogenesis. Circ Res 108:824–836

    Article  PubMed  Google Scholar 

  43. Stuckmann I, Evans S, Lassar AB (2003) Erythropoietin and retinoic acid, secreted from the epicardium, are required for cardiac myocyte proliferation. Dev Biol 255:334–349

    Article  CAS  PubMed  Google Scholar 

  44. Wu H, Lee SH, Gao J et al (1999) Inactivation of erythropoietin leads to defects in cardiac morphogenesis. Development 126:3597–3605

    CAS  PubMed  Google Scholar 

  45. Wu S, Dong X, Regan J et al (2013) Tbx18 regulates development of the epicardium and coronary vessels. Dev Biol 383:307–320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Lavine KJ, White AC, Park C et al (2006) Fibroblast growth factor signals regulate a wave of Hedgehog activation that is essential for coronary vascular development. Genes Dev 20:1651–1666

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Smith CL, Baek ST, Sung CY, Tallquist MD (2011) Epicardial-derived cell epithelial-to-mesenchymal transition and fate specification require PDGF receptor signaling. Circ Res 108:e15–e26

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Jeansson M, Gawlik A, Anderson G et al (2011) Angiopoietin-1 is essential in mouse vasculature during development and in response to injury. J Clin Invest 121:2278–2289

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Kwee L, Baldwin HS, Shen HM et al (1995) Defective development of the embryonic and extraembryonic circulatory systems in vascular cell adhesion molecule (VCAM-1) deficient mice. Development 121:489–503

    CAS  PubMed  Google Scholar 

  50. Phillips HM, Rhee HJ, Murdoch JN et al (2007) Disruption of planar cell polarity signaling results in congenital heart defects and cardiomyopathy attributable to early cardiomyocyte disorganization. Circ Res 101:137–145

    Article  CAS  PubMed  Google Scholar 

  51. Tevosian SG, Deconinck AE, Tanaka M et al (2000) FOG-2, a cofactor for GATA transcription factors, is essential for heart morphogenesis and development of coronary vessels from epicardium. Cell 101:729–739

    Article  CAS  PubMed  Google Scholar 

  52. Li WEI, Waldo K, Linask KL et al (2002) An essential role for connexin43 gap junctions in mouse coronary artery development. Development 129:2031–2042

    CAS  PubMed  Google Scholar 

  53. Grieskamp T, Rudat C, Lüdtke TH-W et al (2011) Notch signaling regulates smooth muscle differentiation of epicardium-derived cells. Circ Res 108:813–823

    Article  CAS  PubMed  Google Scholar 

  54. Acharya A, Baek ST, Huang G et al (2012) The bHLH transcription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors. Development 139:2139–2149

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Van Wijk B, Van Den Berg G, Abu-Issa R et al (2009) Epicardium and myocardium separate from a common precursor pool by crosstalk between bone morphogenetic protein- and fibroblast growth factor-signaling pathways. Circ Res 105:431–441

    Article  PubMed Central  PubMed  Google Scholar 

  56. Landerholm TE, Dong XR, Lu J et al (1999) A role for serum response factor in coronary smooth muscle differentiation from proepicardial cells. Development 126:2053–2062

    CAS  PubMed  Google Scholar 

  57. Lu J, Landerholm TE, Wei JS et al (2001) Coronary smooth muscle differentiation from proepicardial cells requires rhoA-mediated actin reorganization and p160 rho-kinase activity. Dev Biol 240:404–418

    Article  CAS  PubMed  Google Scholar 

  58. Azambuja AP, Portillo-Sánchez V, Rodrigues M et al (2010) Retinoic acid and VEGF delay smooth muscle relative to endothelial differentiation to coordinate inner and outer coronary vessel wall morphogenesis. Circ Res 107:204–216

    Article  CAS  PubMed  Google Scholar 

  59. Risau W, Flamme I (1995) Vasculogenesis. Annu Rev Cell Dev Biol 11:73–91

    Article  CAS  PubMed  Google Scholar 

  60. Kitsukawa T, Shimono A, Kawakami A et al (1995) Overexpression of a membrane protein, neuropilin, in chimeric mice causes anomalies in the cardiovascular system, nervous system and limbs. Development 121:4309–4318

    CAS  PubMed  Google Scholar 

  61. Moore AW, McInnes L, Kreidberg J et al (1999) YAC complementation shows a requirement for Wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis. Development 126:1845–1857

    CAS  PubMed  Google Scholar 

  62. Merki E, Zamora M, Raya A et al (2005) Epicardial retinoid X receptor alpha is required for myocardial growth and coronary artery formation. Proc Natl Acad Sci U S A 102:18455–18460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Kane GC, Lam C-F, O’Cochlain F et al (2006) Gene knockout of the KCNJ8-encoded Kir6.1 K(ATP) channel imparts fatal susceptibility to endotoxemia. FASEB J 20:2271–2280

    Article  CAS  PubMed  Google Scholar 

  64. Teng B, Ledent C, Mustafa J (2008) Up-regulation of A2B adenosine receptor in A2A adenosine receptor knockout mouse coronary artery. J Mol Cell Cardiol 44:905–914

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Mellgren AM, Smith CL, Olsen GS et al (2008) Platelet-derived growth factor receptor beta signaling is required for efficient epicardial cell migration and development of two distinct coronary vascular smooth muscle cell populations. Circ Res 103:1393–1401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Langlois D, Hneino M, Bouazza L et al (2010) Conditional inactivation of TGF-beta type II receptor in smooth muscle cells and epicardium causes lethal aortic and cardiac defects. Transgenic Res 19:1069–1082

    Article  CAS  PubMed  Google Scholar 

  67. Sánchez N, Hill C, Love J et al (2011) The cytoplasmic domain of TGFβR3 through its interaction with the scaffolding protein, GIPC, directs epicardial cell behavior. Dev Biol 358:331–343

    Article  PubMed Central  PubMed  Google Scholar 

  68. Wagner N, Morrison H, Pagnotta S et al (2011) The podocyte protein nephrin is required for cardiac vessel formation. Hum Mol Genet 20:2182–2194

    Article  CAS  PubMed  Google Scholar 

  69. Cheng Z, Sundberg-Smith LJ, Mangiante LE et al (2011) Focal adhesion kinase regulates smooth muscle cell recruitment to the developing vasculature. Arterioscler Thromb Vasc Biol 31:2193–2202

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Barnes RM, Firulli B, VanDusen J et al (2011) Hand2 loss-of-function in Hand1-expressing cells reveals distinct roles in epicardial and coronary vessel formation. Circ Res 108:940–949

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Lin FJ, You LR, Yu CT et al (2012) Endocardial cushion morphogenesis and coronary vessel development require chicken ovalbumin upstream promoter-transcription factor II. Arterioscler Thromb Vasc Biol 32:e135–e146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Diman N, Brooks G, Kruithof B et al (2014) Tbx5 is required for avian and Mammalian epicardial formation and coronary vasculogenesis. Circ Res 115:834–844

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Pérez-Pomares .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Wien

About this chapter

Cite this chapter

Guadix, J.A., Pérez-Pomares, J.M. (2016). Molecular Pathways and Animal Models of Coronary Artery Anomalies. In: Rickert-Sperling, S., Kelly, R., Driscoll, D. (eds) Congenital Heart Diseases: The Broken Heart. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1883-2_45

Download citation

Publish with us

Policies and ethics