Skip to main content

Molecular Pathways and Animal Models of Semilunar Valve and Aortic Arch Anomalies

  • Chapter
Congenital Heart Diseases: The Broken Heart

Abstract

The great arteries of the vertebrate carry blood from the heart to the systemic circulation and are derived from the pharyngeal arch arteries. In higher vertebrates, the pharyngeal arch arteries are a symmetrical series of blood vessels that rapidly remodel during development to become the asymmetric aortic arch arteries carrying oxygenated blood from the left ventricle via the outflow tract. At the base of the aorta, as well as the pulmonary trunk, are the arterial, or semilunar, valves. These valves each have three leaflets and prevent the backflow of blood into the heart. During development, the process of aortic arch and valve formation may go wrong, resulting in cardiovascular defects, and these may, at least in part, be caused by genetic mutations. In this chapter, we will review models harbouring genetic mutations that result in cardiovascular defects affecting the great arteries and the arterial valves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gupta SK, Bamforth SD, Anderson RH (2014) How frequent is the fifth arch artery? Cardiol Young 16:1–19

    Google Scholar 

  2. Bamforth SD, Chaudhry B, Bennett M et al (2013) Clarification of the identity of the mammalian fifth pharyngeal arch artery. Clin Anat 26:173–182

    Article  PubMed  Google Scholar 

  3. Graham A (2003) Development of the pharyngeal arches. Am J Med Genet A 119:251–256

    Article  Google Scholar 

  4. Anderson RH, Chaudhry B, Mohun TJ et al (2012) Normal and abnormal development of the intrapericardial arterial trunks in humans and mice. Cardiovasc Res 95:108–115

    Google Scholar 

  5. Siu SC, Silversides CK (2010) Bicuspid aortic valve disease. J Am Coll Cardiol 55:2789–2800

    Article  PubMed  Google Scholar 

  6. Jerome LA, Papaioannou VE (2001) DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1. Nat Genet 27:286–291

    Article  CAS  PubMed  Google Scholar 

  7. Lindsay EA, Vitelli F, Su H et al (2001) Tbx1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 410:97–101

    Article  CAS  PubMed  Google Scholar 

  8. Merscher S, Funke B, Epstein JA et al (2001) TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell 104:619–629

    Article  CAS  PubMed  Google Scholar 

  9. Lewin MB, Lindsay EA, Jurecic V et al (1997) A genetic etiology for interruption of the aortic arch type B. Am J Cardiol 80:493–497

    Article  CAS  PubMed  Google Scholar 

  10. Bamforth SD, Schneider JE, Bhattacharya S (2012) High-throughput analysis of mouse embryos by magnetic resonance imaging. Cold Spring Harb Protoc 2012:93–101

    Article  PubMed  Google Scholar 

  11. Zhang Z, Cerrato F, Xu H et al (2005) Tbx1 expression in pharyngeal epithelia is necessary for pharyngeal arch artery development. Development 132:5307–5315

    Article  CAS  PubMed  Google Scholar 

  12. Piotrowski T, Ahn DG, Schilling TF et al (2003) The zebrafish van gogh mutation disrupts tbx1, which is involved in the DiGeorge deletion syndrome in humans. Development 130:5043–5052

    Article  CAS  PubMed  Google Scholar 

  13. Piotrowski T, Nusslein-Volhard C (2000) The endoderm plays an important role in patterning the segmented pharyngeal region in zebrafish (Danio rerio). Dev Biol 225:339–356

    Article  CAS  PubMed  Google Scholar 

  14. Isogai S, Horiguchi M, Weinstein BM (2001) The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. Dev Biol 230:278–301

    Article  CAS  PubMed  Google Scholar 

  15. Stalmans I, Lambrechts D, De Smet F et al (2003) VEGF: a modifier of the del22q11 (DiGeorge) syndrome? Nat Med 9:173–182

    Article  CAS  PubMed  Google Scholar 

  16. Ivins S, Lammerts van Beuren K, Roberts C et al (2005) Microarray analysis detects differentially expressed genes in the pharyngeal region of mice lacking Tbx1. Dev Biol 285:554–569

    Article  CAS  PubMed  Google Scholar 

  17. Liao J, Aggarwal VS, Nowotschin S et al (2008) Identification of downstream genetic pathways of Tbx1 in the second heart field. Dev Biol 316:524–537

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Fulcoli FG, Huynh T, Scambler PJ et al (2009) Tbx1 regulates the BMP-Smad1 pathway in a transcription independent manner. PLoS One 4:e6049

    Article  PubMed Central  PubMed  Google Scholar 

  19. Randall V, McCue K, Roberts C et al (2009) Great vessel development requires biallelic expression of Chd7 and Tbx1 in pharyngeal ectoderm in mice. J Clin Invest 119:3301–3310

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Guris DL, Fantes J, Tara D et al (2001) Mice lacking the homologue of the human 22q11.2 gene CRKL phenocopy neurocristopathies of DiGeorge syndrome. Nat Genet 27:293–298

    Article  CAS  PubMed  Google Scholar 

  21. Vitelli F, Taddei I, Morishima M et al (2002) A genetic link between Tbx1 and fibroblast growth factor signaling. Development 129:4605–4611

    CAS  PubMed  Google Scholar 

  22. Guo C, Sun Y, Zhou B et al (2011) A Tbx1-Six1/Eya1-Fgf8 genetic pathway controls mammalian cardiovascular and craniofacial morphogenesis. J Clin Invest 121:1585–1595

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Calmont A, Ivins S, Van Bueren KL et al (2009) Tbx1 controls cardiac neural crest cell migration during arch artery development by regulating Gbx2 expression in the pharyngeal ectoderm. Development 136:3173–3183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. van Bueren KL, Papangeli I, Rochais F et al (2010) Hes1 expression is reduced in Tbx1 null cells and is required for the development of structures affected in 22q11 deletion syndrome. Dev Biol 340:369–380

    Article  PubMed Central  PubMed  Google Scholar 

  25. Nowotschin S, Liao J, Gage PJ et al (2006) Tbx1 affects asymmetric cardiac morphogenesis by regulating Pitx2 in the secondary heart field. Development 133:1565–1573

    Article  CAS  PubMed  Google Scholar 

  26. Vincent SD, Mayeuf-Louchart A, Watanabe Y et al (2014) Prdm1 functions in the mesoderm of the second heart field, where it interacts genetically with Tbx1, during outflow tract morphogenesis in the mouse embryo. Hum Mol Genet 23:5087–5101

    Article  PubMed  Google Scholar 

  27. Papangeli I, Scambler PJ (2013) Tbx1 genetically interacts with the transforming growth factor-beta/bone morphogenetic protein inhibitor Smad7 during great vessel remodeling. Circ Res 112:90–102

    Article  CAS  PubMed  Google Scholar 

  28. Chen L, Fulcoli FG, Ferrentino R et al (2012) Transcriptional control in cardiac progenitors: Tbx1 interacts with the BAF chromatin remodeling complex and regulates Wnt5a. PLoS Genet 8:e1002571

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Meyers EN, Lewandoski M, Martin GR (1998) An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination. Nat Genet 18:136–141

    Article  CAS  PubMed  Google Scholar 

  30. Abu-Issa R, Smyth G, Smoak I et al (2002) Fgf8 is required for pharyngeal arch and cardiovascular development in the mouse. Development 129:4613–4625

    CAS  PubMed  Google Scholar 

  31. Frank DU, Fotheringham LK, Brewer JA et al (2002) An Fgf8 mouse mutant phenocopies human 22q11 deletion syndrome. Development 129:4591–4603

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Macatee TL, Hammond BP, Arenkiel BR et al (2003) Ablation of specific expression domains reveals discrete functions of ectoderm- and endoderm-derived FGF8 during cardiovascular and pharyngeal development. Development 130:6361–6374

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Byrd NA, Meyers EN (2005) Loss of Gbx2 results in neural crest cell patterning and pharyngeal arch artery defects in the mouse embryo. Dev Biol 284:233–245

    Article  CAS  PubMed  Google Scholar 

  34. Greulich F, Rudat C, Kispert A (2011) Mechanisms of T-box gene function in the developing heart. Cardiovasc Res 91:212–222

    Article  CAS  PubMed  Google Scholar 

  35. Bartram U, Molin DG, Wisse LJ et al (2001) Double-outlet right ventricle and overriding tricuspid valve reflect disturbances of looping, myocardialization, endocardial cushion differentiation, and apoptosis in TGF-beta(2)-knockout mice. Circulation 103:2745–2752

    Article  CAS  PubMed  Google Scholar 

  36. Molin DG, DeRuiter MC, Wisse LJ et al (2002) Altered apoptosis pattern during pharyngeal arch artery remodeling is associated with aortic arch malformations in Tgfbeta2 knock-out mice. Cardiovasc Res 56:312–322

    Article  CAS  PubMed  Google Scholar 

  37. Molin DG, Poelmann RE, DeRuiter MC et al (2004) Transforming growth factor beta-SMAD2 signaling regulates aortic arch innervation and development. Circ Res 95:1109–1117

    Article  CAS  PubMed  Google Scholar 

  38. Larsson J, Goumans MJ, Sjostrand LJ et al (2001) Abnormal angiogenesis but intact hematopoietic potential in TGF-beta type I receptor-deficient mice. EMBO J 20:1663–1673

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Oshima M, Oshima H, Taketo MM (1996) TGF-beta receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. Dev Biol 179:297–302

    Article  CAS  PubMed  Google Scholar 

  40. Choudhary B, Ito Y, Makita T et al (2006) Cardiovascular malformations with normal smooth muscle differentiation in neural crest-specific type II TGFbeta receptor (Tgfbr2) mutant mice. Dev Biol 289:420–429

    Article  CAS  PubMed  Google Scholar 

  41. Todorovic V, Frendewey D, Gutstein DE et al (2007) Long form of latent TGF-beta binding protein 1 (Ltbp1L) is essential for cardiac outflow tract septation and remodeling. Development 134:3723–3732

    Article  CAS  PubMed  Google Scholar 

  42. Yasui H, Nakazawa M, Morishima M et al (1995) Morphological observations on the pathogenetic process of transposition of the great arteries induced by retinoic acid in mice. Circulation 91:2478–2486

    Article  CAS  PubMed  Google Scholar 

  43. Garg V, Yamagishi C, Hu T et al (2001) Tbx1, a DiGeorge syndrome candidate gene, is regulated by sonic hedgehog during pharyngeal arch development. Dev Biol 235:62–73

    Article  CAS  PubMed  Google Scholar 

  44. Hu T, Yamagishi H, Maeda J et al (2004) Tbx1 regulates fibroblast growth factors in the anterior heart field through a reinforcing autoregulatory loop involving forkhead transcription factors. Development 131:5491–5502

    Article  CAS  PubMed  Google Scholar 

  45. Yamagishi H, Maeda J, Hu T et al (2003) Tbx1 is regulated by tissue-specific forkhead proteins through a common Sonic hedgehog-responsive enhancer. Genes Dev 17:269–281

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Winnier GE, Kume T, Deng K et al (1999) Roles for the winged helix transcription factors MF1 and MFH1 in cardiovascular development revealed by nonallelic noncomplementation of null alleles. Dev Biol 213:418–431

    Article  CAS  PubMed  Google Scholar 

  47. Iida K, Koseki H, Kakinuma H et al (1997) Essential roles of the winged helix transcription factor MFH-1 in aortic arch patterning and skeletogenesis. Development 124:4627–4638

    CAS  PubMed  Google Scholar 

  48. Zhu H, Wlodarczyk BJ, Scott M et al (2007) Cardiovascular abnormalities in Folr1 knockout mice and folate rescue. Birth Defects Res A Clin Mol Teratol 79:257–268

    Article  CAS  PubMed  Google Scholar 

  49. Mendelsohn C, Lohnes D, Decimo D et al (1994) Function of the retinoic acid receptors (RARs) during development (II). Multiple abnormalities at various stages of organogenesis in RAR double mutants. Development 120:2749–2771

    CAS  PubMed  Google Scholar 

  50. Henderson DJ, Conway SJ, Greene ND et al (2001) Cardiovascular defects associated with abnormalities in midline development in the Loop-tail mouse mutant. Circ Res 89:6–12

    Article  CAS  PubMed  Google Scholar 

  51. Reiter JF, Alexander J, Rodaway A et al (1999) Gata5 is required for the development of the heart and endoderm in zebrafish. Genes Dev 13:2983–2995

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Morrisey EE, Ip HS, Tang Z et al (1997) GATA-5: a transcriptional activator expressed in a novel temporally and spatially-restricted pattern during embryonic development. Dev Biol 183:21–36

    Article  CAS  PubMed  Google Scholar 

  53. Molkentin JD (2000) The zinc finger-containing transcription factors GATA-4, -5, and -6. Ubiquitously expressed regulators of tissue-specific gene expression. J Biol Chem 275:38949–38952

    Article  CAS  PubMed  Google Scholar 

  54. Laforest B, Andelfinger G, Nemer M (2011) Loss of Gata5 in mice leads to bicuspid aortic valve. J Clin Invest 121:2876–2887

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Singh MK, Li Y, Li S et al (2010) Gata4 and Gata5 cooperatively regulate cardiac myocyte proliferation in mice. J Biol Chem 285:1765–1772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Bondy C, Bakalov VK, Cheng C et al (2013) Bicuspid aortic valve and aortic coarctation are linked to deletion of the X chromosome short arm in Turner syndrome. J Med Genet 50:662–665

    Article  PubMed Central  PubMed  Google Scholar 

  57. Thomas PS, Sridurongrit S, Ruiz-Lozano P et al (2012) Deficient signaling via Alk2 (Acvr1) leads to bicuspid aortic valve development. PLoS One 7:e35539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Delot EC, Bahamonde ME, Zhao M et al (2003) BMP signaling is required for septation of the outflow tract of the mammalian heart. Development 130:209–220

    Article  CAS  PubMed  Google Scholar 

  59. Dupuis LE, McCulloch DR, McGarity JD et al (2011) Altered versican cleavage in ADAMTS5 deficient mice; a novel etiology of myxomatous valve disease. Dev Biol 357:152–164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Dupuis LE, Osinska H, Weinstein MB et al (2013) Insufficient versican cleavage and Smad2 phosphorylation results in bicuspid aortic and pulmonary valves. J Mol Cell Cardiol 60:50–59

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Stankunas K, Shang C, Twu KY et al (2008) Pbx/Meis deficiencies demonstrate multigenetic origins of congenital heart disease. Circ Res 103:702–709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Chang CP, Stankunas K, Shang C et al (2008) Pbx1 functions in distinct regulatory networks to pattern the great arteries and cardiac outflow tract. Development 135:3577–3586

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Park EJ, Ogden LA, Talbot A et al (2006) Required, tissue-specific roles for Fgf8 in outflow tract formation and remodeling. Development 133:2419–2433

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Lee TC, Zhao YD, Courtman DW et al (2000) Abnormal aortic valve development in mice lacking endothelial nitric oxide synthase. Circulation 101:2345–2348

    Article  CAS  PubMed  Google Scholar 

  65. Phillips HM, Mahendran P, Singh E et al (2013) Neural crest cells are required for correct positioning of the developing outflow cushions and pattern the arterial valve leaflets. Cardiovasc Res 99:452–460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Sans-Coma V, Arque JM, Duran AC et al (1991) Coronary artery anomalies and bicuspid aortic valves in the Syrian hamster. Basic Res Cardiol 86:148–153

    Article  CAS  PubMed  Google Scholar 

  67. Sans-Coma V, Fernandez B, Duran AC et al (1996) Fusion of valve cushions as a key factor in the formation of congenital bicuspid aortic valves in Syrian hamsters. Anat Rec 244:490–498

    Article  CAS  PubMed  Google Scholar 

  68. Morikawa Y, Cserjesi P (2008) Cardiac neural crest expression of Hand2 regulates outflow and second heart field development. Circ Res 103:1422–1429

    Article  CAS  PubMed  Google Scholar 

  69. Donovan J, Kordylewska A, Jan YN et al (2002) Tetralogy of fallot and other congenital heart defects in Hey2 mutant mice. Curr Biol 12:1605–1610

    Article  CAS  PubMed  Google Scholar 

  70. Chen YH, Ishii M, Sun J et al (2007) Msx1 and Msx2 regulate survival of secondary heart field precursors and post-migratory proliferation of cardiac neural crest in the outflow tract. Dev Biol 308:421–437

    Article  CAS  PubMed  Google Scholar 

  71. Brewer S, Jiang X, Donaldson S et al (2002) Requirement for AP-2alpha in cardiac outflow tract morphogenesis. Mech Dev 110:139–149

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Alberto Briones-Leon for performing the embryo ink injections and to Prof. Robert Anderson, Prof. Helen Arthur and Dr. Gavin Richardson for critically reading the manuscript. SDB is the recipient of a British Heart Foundation Intermediate Basic Science Research Fellowship. A-LJ was funded by a British Heart Foundation PhD Studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon D. Bamforth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Wien

About this chapter

Cite this chapter

Johnson, AL., Bamforth, S.D. (2016). Molecular Pathways and Animal Models of Semilunar Valve and Aortic Arch Anomalies. In: Rickert-Sperling, S., Kelly, R., Driscoll, D. (eds) Congenital Heart Diseases: The Broken Heart. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1883-2_42

Download citation

Publish with us

Policies and ethics