Skip to main content

Human Genetics of Semilunar Valve and Aortic Arch Anomalies

  • Chapter
Congenital Heart Diseases: The Broken Heart
  • 2227 Accesses

Abstract

Lesions of the semilunar valve and the aortic arch can occur either in isolation or as part of well-described clinical syndromes. The polygenic cause of calcific aortic valve disease will be discussed including the key role of NOTCH1 mutations. In addition, the complex trait of bicuspid aortic valve disease will be outlined, both in sporadic/familial cases and in the context of associated syndromes, such as Alagille, Williams–Beuren, and Kabuki syndromes. Aortic arch abnormalities particularly coarctation of the aorta and interrupted aortic arch, including their association with syndromes such as Turner and 22q11 deletion, respectively, are also discussed. Finally, the genetic basis of congenital pulmonary valve stenosis is summarized, with particular note to Ras-/mitogen-activated protein kinase (Ras/MAPK) pathway syndromes and other less common associations, such as Holt–Oram syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armstrong EJ, Bischoff J (2004) Heart valve development: endothelial cell signaling and differentiation. Circ Res 95:459–470

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Garg V (2006) Molecular genetics of aortic valve disease. Curr Opin Cardiol 21:180–184

    Article  PubMed  Google Scholar 

  3. Bella JN, Tang W, Kraja A et al (2007) Genome-wide linkage mapping for valve calcification susceptibility loci in hypertensive sibships: the Hypertension Genetic Epidemiology Network Study. Hypertension 49:453–460

    Article  CAS  PubMed  Google Scholar 

  4. Probst V, Le Scouarnec S, Legendre A et al (2006) Familial aggregation of calcific aortic valve stenosis in the western part of France. Circulation 113:856–860

    Article  PubMed  Google Scholar 

  5. Otto CM (2002) Calcification of bicuspid aortic valves. Heart 88:321–322

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Garg V, Muth AN, Ransom JF et al (2005) Mutations in NOTCH1 cause aortic valve disease. Nature 437:270–274

    Article  CAS  PubMed  Google Scholar 

  7. Niessen K, Karsan A (2008) Notch signaling in cardiac development. Circ Res 102:1169–1181

    Article  CAS  PubMed  Google Scholar 

  8. Mohamed SA, Aherrahrou Z, Liptau H et al (2006) Novel missense mutations (p. T596M and p. P1797H) in NOTCH1 in patients with bicuspid aortic valve. Biochem Biophys Res Commun 345:1460–1465

    Article  CAS  PubMed  Google Scholar 

  9. Merla G, Brunetti-Pierri N, Piccolo P et al (2012) Supravalvular aortic stenosis: elastin arteriopathy. Circ Cardiovasc Genet 5:692–696

    Article  CAS  PubMed  Google Scholar 

  10. Pober BR, Johnson M, Urban Z (2008) Mechanisms and treatment of cardiovascular disease in Williams-Beuren syndrome. J Clin Invest 11:1606–1615

    Article  Google Scholar 

  11. Urban Z, Zhang J, Davis EC et al (2001) Supravalvular aortic stenosis: genetic and molecular dissection of a complex mutation in the elastin gene. Hum Genet 109:512–520

    Article  CAS  PubMed  Google Scholar 

  12. Mitchell SC, Korones SB, Berendes HW (1971) Congenital heart disease in 56,109 births. Incidence and natural history. Circulation 43:323–332

    Article  CAS  PubMed  Google Scholar 

  13. Rosenthal E (2005) Coarctation of the aorta from fetus to adult: curable condition or lifelong disease process? Heart 91:1495–1502

    Article  PubMed Central  PubMed  Google Scholar 

  14. Braverman AC, Guven H, Beardslee MA et al (2005) The bicuspid aortic valve. Curr Probl Cardiol 30:470–522

    Article  PubMed  Google Scholar 

  15. Prapa M, Ho SY (2012) Risk stratification in bicuspid aortic valve disease: still more work to do. Eur J Cardiothorac Surg 41:327–328

    Article  PubMed  Google Scholar 

  16. Ho VB, Bakalov VK, Cooley M et al (2004) Major vascular anomalies in Turner syndrome: prevalence and magnetic resonance angiographic features. Circulation 110:1694–1700

    Article  PubMed  Google Scholar 

  17. Bondy C, Bakalov VK, Cheng C et al (2013) Bicuspid aortic valve and aortic coarctation are linked to deletion of the X chromosome short arm in Turner syndrome. J Med Genet 50:662–665

    Article  PubMed Central  PubMed  Google Scholar 

  18. Loffredo CA, Chokkalingam A, Sill AM et al (2004) Prevalence of congenital cardiovascular malformations among relatives of infants with hypoplastic left heart, coarctation of the aorta, and d-transposition of the great arteries. Am J Med Genet A 124A:225–230

    Article  PubMed  Google Scholar 

  19. Loscalzo ML, Goh DL, Loeys B et al (2007) Familial thoracic aortic dilation and bicommissural aortic valve: a prospective analysis of natural history and inheritance. Am J Med Genet A 143A:1960–1967

    Article  CAS  PubMed  Google Scholar 

  20. Kappetein AP, Gittenberger-de Groot AC, Zwinderman AH et al (1991) The neural crest as a possible pathogenetic factor in coarctation of the aorta and bicuspid aortic valve. J Thorac Cardiovasc Surg 102:830–836

    CAS  PubMed  Google Scholar 

  21. Spinner NB, Colliton RP, Crosnier C et al (2001) Jagged1 mutations in alagille syndrome. Hum Mutat 17:18–33

    Article  CAS  PubMed  Google Scholar 

  22. Colliton RP, Bason L, Lu FM et al (2001) Mutation analysis of Jagged1 (JAG1) in Alagille syndrome patients. Hum Mutat 17:151–152

    Article  CAS  PubMed  Google Scholar 

  23. McElhinney DB, Krantz ID, Bason L et al (2002) Analysis of cardiovascular phenotype and genotype-phenotype correlation in individuals with a JAG1 mutation and/or Alagille syndrome. Circulation 106:2567–2574

    Article  PubMed  Google Scholar 

  24. Raas-Rothschild A, Shteyer E, Lerer I et al (2002) Jagged1 gene mutation for abdominal coarctation of the aorta in Alagille syndrome. Am J Med Genet A 112:75–78

    Article  Google Scholar 

  25. Kamath BM, Spinner NB, Emerick KM et al (2004) Vascular anomalies in Alagille syndrome: a significant cause of morbidity and mortality. Circulation 109:1354–1358

    Article  PubMed  Google Scholar 

  26. Zimrin AB, Pepper MS, McMahon GA et al (1996) An antisense oligonucleotide to the notch ligand jagged enhances fibroblast growth factor-induced angiogenesis in vitro. J Biol Chem 271:32499–32502

    Article  CAS  PubMed  Google Scholar 

  27. Xue Y, Gao X, Lindsell CE et al (1999) Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1. Hum Mol Genet 8:723–730

    Article  CAS  PubMed  Google Scholar 

  28. Hallidie-Smith KA, Karas S (1988) Cardiac anomalies in Williams-Beuren syndrome. Arch Dis Child 63:809–813

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Sugayama SM, Moises RL, Wagenfur J et al (2003) Williams-Beuren syndrome: cardiovascular abnormalities in 20 patients diagnosed with fluorescence in situ hybridization. Arq Bras Cardiol 81:462–473

    Article  PubMed  Google Scholar 

  30. Hughes HE, Davies SJ (1994) Coarctation of the aorta in Kabuki syndrome. Arch Dis Child 70:512–514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Digilio MC, Marino B, Toscano A et al (2001) Congenital heart defects in Kabuki syndrome. Am J Med Genet A 100:269–274

    Article  CAS  Google Scholar 

  32. Ng SB, Bigham AW, Buckingham KJ et al (2010) Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet 42:790–793

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Issaeva I, Zonis Y, Rozovskaia T et al (2007) Knockdown of ALR (MLL2) reveals ALR target genes and leads to alterations in cell adhesion and growth. Mol Cell Biol 27:1889–1903

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Glaser S, Schaft J, Lubitz S et al (2006) Multiple epigenetic maintenance factors implicated by the loss of Mll2 in mouse development. Development 133:1423–1432

    Article  CAS  PubMed  Google Scholar 

  35. Biben C, Weber R, Kesteven S et al (2000) Cardiac septal and valvular dysmorphogenesis in mice heterozygous for mutations in the homeobox gene Nkx2-5. Circ Res 87:888–895

    Article  CAS  PubMed  Google Scholar 

  36. Schott JJ, Benson DW, Basson CT et al (1998) Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science 281:108–111

    Article  CAS  PubMed  Google Scholar 

  37. Benson DW, Silberbach GM, Kavanaugh-McHugh A et al (1999) Mutations in the cardiac transcription factor NKX2-5 affect diverse cardiac developmental pathways. J Clin Invest 104:1567–1573

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. McElhinney DB, Geiger E, Blinder J et al (2003) NKX2.5 mutations in patients with congenital heart disease. J Am Coll Cardiol 42:1650–1655

    Article  CAS  PubMed  Google Scholar 

  39. Majumdar R, Yagubyan M, Sarkar G et al (2006) Bicuspid aortic valve and ascending aortic aneurysm are not associated with germline or somatic homeobox NKX2-5 gene polymorphism in 19 patients. J Thorac Cardiovasc Surg 131:1301–1305

    Article  CAS  PubMed  Google Scholar 

  40. Gaussin V, Van de Putte T, Mishina Y et al (2002) Endocardial cushion and myocardial defects after cardiac myocyte-specific conditional deletion of the bone morphogenetic protein receptor ALK3. Proc Natl Acad Sci U S A 99:2878–2883

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Kim RY, Robertson EJ, Solloway MJ (2001) Bmp6 and Bmp7 are required for cushion formation and septation in the developing mouse heart. Dev Biol 235:449–466

    Article  CAS  PubMed  Google Scholar 

  42. Galvin KM, Donovan MJ, Lynch CA et al (2000) A role for smad6 in development and homeostasis of the cardiovascular system. Nat Genet 24:171–174

    Article  CAS  PubMed  Google Scholar 

  43. Tan HL, Glen E, Topf A et al (2012) Nonsynonymous variants in the SMAD6 gene predispose to congenital cardiovascular malformation. Hum Mutat 33:720–727

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Zaidi S, Choi M, Wakimoto H et al (2013) De novo mutations in histone-modifying genes in congenital heart disease. Nature 498:220–223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Powell CB, Stone FM, Atkins DL et al (1997) Operative mortality and frequency of coexistent anomalies in interruption of the aortic arch. Am J Cardiol 79:1147–1148

    Article  CAS  PubMed  Google Scholar 

  46. Gruber PJ, Epstein JA (2004) Development gone awry: congenital heart disease. Circ Res 94:273–283

    Article  CAS  PubMed  Google Scholar 

  47. Corsten-Janssen N, Kerstjens-Frederikse WS, du Marchie Sarvaas GJ et al (2013) The cardiac phenotype in patients with a CHD7 mutation. Circ Cardiovasc Genet 6:248–254

    Article  CAS  PubMed  Google Scholar 

  48. Goldmuntz E, Clark BJ, Mitchell LE et al (1998) Frequency of 22q11 deletions in patients with conotruncal defects. J Am Coll Cardiol 32:492–498

    Article  CAS  PubMed  Google Scholar 

  49. Ryan AK, Goodship JA, Wilson DI et al (1997) Spectrum of clinical features associated with interstitial chromosome 22q11 deletions: a European collaborative study. J Med Genet 34:798–804

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Marino B, Digilio MC, Toscano A et al (2001) Anatomic patterns of conotruncal defects associated with deletion 22q11. Genet Med 3:45–48

    Article  CAS  PubMed  Google Scholar 

  51. Gao S, Li X, Amendt BA (2013) Understanding the role of Tbx1 as a candidate gene for 22q11.2 deletion syndrome. Curr Allergy Asthma Rep 13:613–621

    Article  CAS  PubMed  Google Scholar 

  52. Merscher S, Funke B, Epstein JA et al (2001) TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell 104:619–629

    Article  CAS  PubMed  Google Scholar 

  53. Marino B, Digilio MC, Persiani M et al (1999) Deletion 22q11 in patients with interrupted aortic arch. Am J Cardiol 84:360–361

    Article  CAS  PubMed  Google Scholar 

  54. Marino B, Digilio MC, Toscano A et al (1999) Congenital heart diseases in children with Noonan syndrome: an expanded cardiac spectrum with high prevalence of atrioventricular canal. J Pediatr 135:703–706

    Article  CAS  PubMed  Google Scholar 

  55. Roberts AE, Allanson JE, Tartaglia M et al (2013) Noonan syndrome. Lancet 381:333–342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Tartaglia M, Mehler EL, Goldberg R et al (2001) Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet 29:465–468

    Article  CAS  PubMed  Google Scholar 

  57. Tartaglia M, Kalidas K, Shaw A et al (2002) PTPN11 mutations in Noonan syndrome: molecular spectrum, genotype-phenotype correlation, and phenotypic heterogeneity. Am J Hum Genet 70:1555–1563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Croonen EA, Nillesen W, Schrander C et al (2013) Noonan syndrome: comparing mutation-positive with mutation-negative dutch patients. Mol Syndromol 4:227–234

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Lin AE, Alexander ME, Colan SD et al (2011) Clinical, pathological, and molecular analyses of cardiovascular abnormalities in Costello syndrome: a Ras/MAPK pathway syndrome. Am J Med Genet A 155A:486–507

    Article  PubMed  Google Scholar 

  60. Ben-Shachar S, Constantini S, Hallevi H et al (2013) Increased rate of missense/in-frame mutations in individuals with NF1-related pulmonary stenosis: a novel genotype-phenotype correlation. Eur J Hum Genet 21:535–539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Patel C, Silcock L, McMullan D et al (2012) TBX5 intragenic duplication: a family with an atypical Holt-Oram syndrome phenotype. Eur J Hum Genet 20:863–869

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Xiang R, Fan LL, Huang H et al (2014) A novel mutation of GATA4 (K319E) is responsible for familial atrial septal defect and pulmonary valve stenosis. Gene 534:320–323

    Article  CAS  PubMed  Google Scholar 

  63. Garg V, Kathiriya IS, Barnes R et al (2003) GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature 424:443–447

    Article  CAS  PubMed  Google Scholar 

  64. Okubo A, Miyoshi O, Baba K et al (2004) A novel GATA4 mutation completely segregated with atrial septal defect in a large Japanese family. J Med Genet 41:e97

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siew Yen Ho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Wien

About this chapter

Cite this chapter

Prapa, M., Ho, S.Y. (2016). Human Genetics of Semilunar Valve and Aortic Arch Anomalies. In: Rickert-Sperling, S., Kelly, R., Driscoll, D. (eds) Congenital Heart Diseases: The Broken Heart. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1883-2_41

Download citation

Publish with us

Policies and ethics