Skip to main content

Molecular Pathways and Animal Models of Tetralogy of Fallot and Double Outlet Right Ventricle

  • Chapter
Congenital Heart Diseases: The Broken Heart
  • 2326 Accesses

Abstract

Tetralogy of Fallot and double outlet right ventricle are outflow tract (OFT) alignment defects situated on a continuous disease spectrum. A myriad of upstream causes can impact on ventriculoarterial alignment that can be summarized as defects in either (1) OFT elongation during looping morphogenesis or (2) OFT remodeling during cardiac septation. Embryological processes underlying these two developmental steps include deployment of second heart field cardiac progenitor cells, establishment and transmission of embryonic left/right information driving OFT rotation, and OFT cushion and valve morphogenesis. The formation and remodeling of pulmonary trunk infundibular myocardium are critical components of both steps. Importantly, OFT alignment is mechanistically distinct from neural crest-driven OFT septation, although neural crest cells impact indirectly on alignment through their role in modulating signaling during SHF development. As yet poorly understood non-genetic causes of alignment defects that impact the above processes include hemodynamic changes, the uterine environment, and stochastic events. The heterogeneity of causes converging on alignment defects characterizes the OFT as a hotspot of congenital heart defects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kelly RG (2012) The second heart field. Curr Top Dev Biol 100:33–65

    Article  CAS  PubMed  Google Scholar 

  2. Dyer LA, Kirby ML (2009) The role of secondary heart field in cardiac development. Dev Biol 336:137–144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Miquerol L, Kelly RG (2013) Organogenesis of the vertebrate heart. Wiley Interdiscip Rev Dev Biol 2:17–29

    Article  CAS  PubMed  Google Scholar 

  4. Hutson MR, Kirby ML (2003) Neural crest and cardiovascular development: a 20-year perspective. Birth Defects Res C Embryo Today 69:2–13

    Article  CAS  PubMed  Google Scholar 

  5. Yelbuz TM, Waldo KL, Kumiski DH et al (2002) Shortened outflow tract leads to altered cardiac looping after neural crest ablation. Circulation 106:504–510

    Article  PubMed  Google Scholar 

  6. Di Felice V, Zummo G (2009) Tetralogy of fallot as a model to study cardiac progenitor cell migration and differentiation during heart development. Trends Cardiovasc Med 19:130–135

    Article  PubMed  Google Scholar 

  7. Van Praagh R (2009) The first Stella van Praagh memorial lecture: the history and anatomy of tetralogy of Fallot. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu: 19–38

    Google Scholar 

  8. Ward C, Stadt H, Hutson M et al (2005) Ablation of the secondary heart field leads to tetralogy of Fallot and pulmonary atresia. Dev Biol 284:72–83

    Article  CAS  PubMed  Google Scholar 

  9. Parisot P, Mesbah K, Theveniau-Ruissy M et al (2011) Tbx1, subpulmonary myocardium and conotruncal congenital heart defects. Birth Defects Res A Clin Mol Teratol 91:477–484

    Article  CAS  PubMed  Google Scholar 

  10. Rana MS, Theveniau-Ruissy M, De Bono C et al (2014) Tbx1 coordinates addition of posterior second heart field progenitor cells to the arterial and venous poles of the heart. Circ Res 115:790–799

    Article  CAS  PubMed  Google Scholar 

  11. Bertrand N, Roux M, Ryckebusch L et al (2011) Hox genes define distinct progenitor sub-domains within the second heart field. Dev Biol 353:266–274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Dominguez JN, Meilhac SM, Bland YS et al (2012) Asymmetric fate of the posterior part of the second heart field results in unexpected left/right contributions to both poles of the heart. Circ Res 111:1323–1335

    Article  CAS  PubMed  Google Scholar 

  13. Lescroart F, Mohun T, Meilhac SM et al (2012) Lineage tree for the venous pole of the heart: clonal analysis clarifies controversial genealogy based on genetic tracing. Circ Res 111:1313–1322

    Article  CAS  PubMed  Google Scholar 

  14. Rochais F, Mesbah K, Kelly RG (2009) Signaling pathways controlling second heart field development. Circ Res 104:933–942

    Article  CAS  PubMed  Google Scholar 

  15. Theveniau-Ruissy M, Dandonneau M, Mesbah K et al (2008) The del22q11.2 candidate gene Tbx1 controls regional outflow tract identity and coronary artery patterning. Circ Res 103:142–148

    Article  CAS  PubMed  Google Scholar 

  16. Baldini A (2005) Dissecting contiguous gene defects: TBX1. Curr Opin Genet Dev 15:279–284

    Article  CAS  PubMed  Google Scholar 

  17. Chen L, Fulcoli FG, Tang S et al (2009) Tbx1 regulates proliferation and differentiation of multipotent heart progenitors. Circ Res 105:842–851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Liao J, Aggarwal VS, Nowotschin S et al (2008) Identification of downstream genetic pathways of Tbx1 in the second heart field. Dev Biol 316:524–537

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Zhang Z, Baldini A (2008) In vivo response to high-resolution variation of Tbx1 mRNA dosage. Hum Mol Genet 17:150–157

    Article  CAS  PubMed  Google Scholar 

  20. Prall OW, Menon MK, Solloway MJ et al (2007) An Nkx2-5/Bmp2/Smad1 negative feedback loop controls heart progenitor specification and proliferation. Cell 128:947–959

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Laforest B, Nemer M (2011) GATA5 interacts with GATA4 and GATA6 in outflow tract development. Dev Biol 358:368–378

    Article  CAS  PubMed  Google Scholar 

  22. Raid R, Krinka D, Bakhoff L et al (2009) Lack of Gata3 results in conotruncal heart anomalies in mouse. Mech Dev 126:80–89

    Article  CAS  PubMed  Google Scholar 

  23. Tevosian SG, Deconinck AE, Tanaka M et al (2000) FOG-2, a cofactor for GATA transcription factors, is essential for heart morphogenesis and development of coronary vessels from epicardium. Cell 101:729–739

    Article  CAS  PubMed  Google Scholar 

  24. Crispino JD, Lodish MB, Thurberg BL et al (2001) Proper coronary vascular development and heart morphogenesis depend on interaction of GATA-4 with FOG cofactors. Genes Dev 15:839–844

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Makki N, Capecchi MR (2012) Cardiovascular defects in a mouse model of HOXA1 syndrome. Hum Mol Genet 21:26–31

    Article  PubMed Central  PubMed  Google Scholar 

  26. Ilagan R, Abu-Issa R, Brown D et al (2006) Fgf8 is required for anterior heart field development. Development 133:2435–2445

    Article  CAS  PubMed  Google Scholar 

  27. Marguerie A, Bajolle F, Zaffran S et al (2006) Congenital heart defects in Fgfr2-IIIb and Fgf10 mutant mice. Cardiovasc Res 71:50–60

    Article  CAS  PubMed  Google Scholar 

  28. Park EJ, Ogden LA, Talbot A et al (2006) Required, tissue-specific roles for Fgf8 in outflow tract formation and remodeling. Development 133:2419–2433

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Park EJ, Watanabe Y, Smyth G et al (2008) An FGF autocrine loop initiated in second heart field mesoderm regulates morphogenesis at the arterial pole of the heart. Development 135:3599–3610

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Watanabe Y, Miyagawa-Tomita S, Vincent SD et al (2010) Role of mesodermal FGF8 and FGF10 overlaps in the development of the arterial pole of the heart and pharyngeal arch arteries. Circ Res 106:495–503

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Vincentz JW, McWhirter JR, Murre C et al (2005) Fgf15 is required for proper morphogenesis of the mouse cardiac outflow tract. Genesis 41:192–201

    Article  CAS  PubMed  Google Scholar 

  32. Hutson MR, Zhang P, Stadt HA et al (2006) Cardiac arterial pole alignment is sensitive to FGF8 signaling in the pharynx. Dev Biol 295:486–497

    Article  CAS  PubMed  Google Scholar 

  33. Donovan J, Kordylewska A, Jan YN et al (2002) Tetralogy of fallot and other congenital heart defects in Hey2 mutant mice. Curr Biol 12:1605–1610

    Article  CAS  PubMed  Google Scholar 

  34. Rochais F, Dandonneau M, Mesbah K et al (2009) Hes1 is expressed in the second heart field and is required for outflow tract development. PLoS One 4:e6267

    Article  PubMed Central  PubMed  Google Scholar 

  35. High FA, Jain R, Stoller JZ et al (2009) Murine Jagged1/Notch signaling in the second heart field orchestrates Fgf8 expression and tissue-tissue interactions during outflow tract development. J Clin Invest 119:1986–1996

    CAS  PubMed Central  PubMed  Google Scholar 

  36. McCright B, Lozier J, Gridley T (2002) A mouse model of Alagille syndrome: Notch2 as a genetic modifier of Jag1 haploinsufficiency. Development 129:1075–1082

    CAS  PubMed  Google Scholar 

  37. High FA, Lu MM, Pear WS et al (2008) Endothelial expression of the Notch ligand Jagged1 is required for vascular smooth muscle development. Proc Natl Acad Sci U S A 105:1955–1959

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Nakajima M, Moriizumi E, Koseki H et al (2004) Presenilin 1 is essential for cardiac morphogenesis. Dev Dyn 230:795–799

    Article  CAS  PubMed  Google Scholar 

  39. Cohen ED, Wang Z, Lepore JJ et al (2007) Wnt/beta-catenin signaling promotes expansion of Isl-1-positive cardiac progenitor cells through regulation of FGF signaling. J Clin Invest 117:1794–1804

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Dyer LA, Kirby ML (2009) Sonic hedgehog maintains proliferation in secondary heart field progenitors and is required for normal arterial pole formation. Dev Biol 330:305–317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Hoffmann AD, Peterson MA, Friedland-Little JM et al (2009) sonic hedgehog is required in pulmonary endoderm for atrial septation. Development 136:1761–1770

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Washington Smoak I, Byrd NA et al (2005) Sonic hedgehog is required for cardiac outflow tract and neural crest cell development. Dev Biol 283:357–372

    Article  CAS  PubMed  Google Scholar 

  43. Li P, Pashmforoush M, Sucov HM (2010) Retinoic acid regulates differentiation of the secondary heart field and TGFbeta-mediated outflow tract septation. Dev Cell 18:480–485

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Yasui H, Morishima M, Nakazawa M et al (1999) Developmental spectrum of cardiac outflow tract anomalies encompassing transposition of the great arteries and dextroposition of the aorta: pathogenic effect of extrinsic retinoic acid in the mouse embryo. Anat Rec 254:253–260

    Article  CAS  PubMed  Google Scholar 

  45. Ratajska A, Zlotorowicz R, Blazejczyk M et al (2005) Coronary artery embryogenesis in cardiac defects induced by retinoic acid in mice. Birth Defects Res A Clin Mol Teratol 73:966–979

    Article  CAS  PubMed  Google Scholar 

  46. Henderson DJ, Phillips HM, Chaudhry B (2006) Vang-like 2 and noncanonical Wnt signaling in outflow tract development. Trends Cardiovasc Med 16:38–45

    Article  CAS  PubMed  Google Scholar 

  47. Sinha T, Wang B, Evans S et al (2012) Disheveled mediated planar cell polarity signaling is required in the second heart field lineage for outflow tract morphogenesis. Dev Biol 370:135–144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Ramsbottom SA, Sharma V, Rhee HJ et al (2014) Vangl2-regulated polarisation of second heart field-derived cells is required for outflow tract lengthening during cardiac development. PLoS Genet 10:e1004871

    Article  PubMed Central  PubMed  Google Scholar 

  49. Phillips HM, Rhee HJ, Murdoch JN et al (2007) Disruption of planar cell polarity signaling results in congenital heart defects and cardiomyopathy attributable to early cardiomyocyte disorganization. Circ Res 101:137–145

    Article  CAS  PubMed  Google Scholar 

  50. Schleiffarth JR, Person AD, Martinsen BJ et al (2007) Wnt5a is required for cardiac outflow tract septation in mice. Pediatr Res 61:386–391

    Article  PubMed  Google Scholar 

  51. Zhou W, Lin L, Majumdar A, Li X et al (2007) Modulation of morphogenesis by noncanonical Wnt signaling requires ATF/CREB family-mediated transcriptional activation of TGFbeta2. Nat Genet 39:1225–1234

    Article  CAS  PubMed  Google Scholar 

  52. Cohen ED, Miller MF, Wang Z et al (2012) Wnt5a and Wnt11 are essential for second heart field progenitor development. Development 139:1931–1940

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Chen L, Fulcoli FG, Ferrentino R et al (2012) Transcriptional control in cardiac progenitors: Tbx1 interacts with the BAF chromatin remodeling complex and regulates Wnt5a. PLoS Genet 8:e1002571

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Sinha T, Li D, Theveniau-Ruissy M, Hutson MR et al (2014) Loss of Wnt5a disrupts second heart field cell deployment and may contribute to OFT malformations in DiGeorge syndrome. Hum Mol Genet 24:1704–1716

    Article  PubMed  Google Scholar 

  55. Conway SJ, Henderson DJ, Kirby ML et al (1997) Development of a lethal congenital heart defect in the splotch (Pax3) mutant mouse. Cardiovasc Res 36:163–173

    Article  CAS  PubMed  Google Scholar 

  56. Mesbah K, Harrelson Z, Theveniau-Ruissy M et al (2008) Tbx3 is required for outflow tract development. Circ Res 103:743–750

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Bakker ML, Boukens BJ, Mommersteeg MT et al (2008) Transcription factor Tbx3 is required for the specification of the atrioventricular conduction system. Circ Res 102:1340–1349

    Article  CAS  PubMed  Google Scholar 

  58. Stankunas K, Shang C, Twu KY et al (2008) Pbx/Meis deficiencies demonstrate multigenetic origins of congenital heart disease. Circ Res 103:702–709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Chang CP, Stankunas K, Shang C et al (2008) Pbx1 functions in distinct regulatory networks to pattern the great arteries and cardiac outflow tract. Development 135:3577–3586

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Bostrom MP, Hutchins GM (1988) Arrested rotation of the outflow tract may explain double-outlet right ventricle. Circulation 77:1258–1265

    Article  CAS  PubMed  Google Scholar 

  61. Lomonico MP, Bostrom MP, Moore GW et al (1988) Arrested rotation of the outflow tract may explain tetralogy of Fallot and transposition of the great arteries. Pediatr Pathol 8:267–281

    Article  CAS  PubMed  Google Scholar 

  62. Bajolle F, Zaffran S, Kelly RG et al (2006) Rotation of the myocardial wall of the outflow tract is implicated in the normal positioning of the great arteries. Circ Res 98:421–428

    Article  CAS  PubMed  Google Scholar 

  63. Thompson RP, Abercrombie V, Wong M (1987) Morphogenesis of the truncus arteriosus of the chick embryo heart: movements of autoradiographic tattoos during septation. Anat Rec 218:434–440, 394–435

    Article  CAS  PubMed  Google Scholar 

  64. Bajolle F, Zaffran S, Meilhac SM et al (2008) Myocardium at the base of the aorta and pulmonary trunk is prefigured in the outflow tract of the heart and in subdomains of the second heart field. Dev Biol 313:25–34

    Article  CAS  PubMed  Google Scholar 

  65. Vandenberg LN, Levin M (2013) A unified model for left-right asymmetry? Comparison and synthesis of molecular models of embryonic laterality. Dev Biol 379:1–15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Icardo JM, Sanchez de Vega MJ (1991) Spectrum of heart malformations in mice with situs solitus, situs inversus, and associated visceral heterotaxy. Circulation 84:2547–2558

    Article  CAS  PubMed  Google Scholar 

  67. Morishima M, Yasui H, Nakazawa M et al (1998) Situs variation and cardiovascular anomalies in the transgenic mouse insertional mutation, inv. Teratology 57:302–309

    Article  CAS  PubMed  Google Scholar 

  68. Bamforth SD, Braganca J, Farthing CR et al (2004) Cited2 controls left-right patterning and heart development through a Nodal-Pitx2c pathway. Nat Genet 36:1189–1196

    Article  CAS  PubMed  Google Scholar 

  69. Weninger WJ, Lopes Floro K, Bennett MB et al (2005) Cited2 is required both for heart morphogenesis and establishment of the left-right axis in mouse development. Development 132:1337–1348

    Article  CAS  PubMed  Google Scholar 

  70. Tan SY, Rosenthal J, Zhao XQ et al (2007) Heterotaxy and complex structural heart defects in a mutant mouse model of primary ciliary dyskinesia. J Clin Invest 117:3742–3752

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Willaredt MA, Gorgas K, Gardner HA et al (2012) Multiple essential roles for primary cilia in heart development. Cilia 1:23

    Article  PubMed Central  PubMed  Google Scholar 

  72. Franco D, Christoffels VM, Campione M (2014) Homeobox transcription factor Pitx2: the rise of an asymmetry gene in cardiogenesis and arrhythmogenesis. Trends Cardiovasc Med 24:23–31

    Article  CAS  PubMed  Google Scholar 

  73. Scherptong RW, Jongbloed MR, Wisse LJ et al (2012) Morphogenesis of outflow tract rotation during cardiac development: the pulmonary push concept. Dev Dyn 241:1413–1422

    Article  PubMed  Google Scholar 

  74. Nowotschin S, Liao J, Gage PJ et al (2006) Tbx1 affects asymmetric cardiac morphogenesis by regulating Pitx2 in the secondary heart field. Development 133(8):1565–1573

    Article  CAS  PubMed  Google Scholar 

  75. Garside VC, Chang AC, Karsan A et al (2013) Co-ordinating Notch, BMP, and TGF-beta signaling during heart valve development. Cell Mol Life Sci 70:2899–2917

    Article  CAS  PubMed  Google Scholar 

  76. Bartram U, Molin DG, Wisse LJ et al (2001) Double-outlet right ventricle and overriding tricuspid valve reflect disturbances of looping, myocardialization, endocardial cushion differentiation, and apoptosis in TGF-beta(2)-knockout mice. Circulation 103:2745–2752

    Article  CAS  PubMed  Google Scholar 

  77. Midgett M, Rugonyi S (2014) Congenital heart malformations induced by hemodynamic altering surgical interventions. Front Physiol 5:287

    Article  PubMed Central  PubMed  Google Scholar 

  78. Yashiro K, Shiratori H, Hamada H (2007) Haemodynamics determined by a genetic programme govern asymmetric development of the aortic arch. Nature 450:285–288

    Article  CAS  PubMed  Google Scholar 

  79. Van Praagh R, Van Praagh S (1966) Isolated ventricular inversion. A consideration of the morphogenesis, definition and diagnosis of nontransposed and transposed great arteries. Am J Cardiol 17:395–406

    Article  PubMed  Google Scholar 

  80. Goor DA, Edwards JE (1973) The spectrum of transposition of the great arteries: with specific reference to developmental anatomy of the conus. Circulation 48:406–415

    Article  CAS  PubMed  Google Scholar 

  81. Restivo A, Piacentini G, Placidi S et al (2006) Cardiac outflow tract: a review of some embryogenetic aspects of the conotruncal region of the heart. Anat Rec A Discov Mol Cell Evol Biol 288:936–943

    Article  PubMed  Google Scholar 

  82. Tullio AN, Accili D, Ferrans VJ et al (1997) Nonmuscle myosin II-B is required for normal development of the mouse heart. Proc Natl Acad Sci U S A 94:12407–12412

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Schaefer KS, Doughman YQ, Fisher SA et al (2004) Dynamic patterns of apoptosis in the developing chicken heart. Dev Dyn 229:489–499

    Article  PubMed  Google Scholar 

  84. Watanabe M, Jafri A, Fisher SA (2001) Apoptosis is required for the proper formation of the ventriculo-arterial connections. Dev Biol 240:274–288

    Article  CAS  PubMed  Google Scholar 

  85. Molin DG, Roest PA, Nordstrand H et al (2004) Disturbed morphogenesis of cardiac outflow tract and increased rate of aortic arch anomalies in the offspring of diabetic rats. Birth Defects Res A Clin Mol Teratol 70:927–938

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research in the author’s laboratory is supported by the Agence Nationale pour la Recherche, Fondation pour la Recherche Médicale and Association Française contre les Myopathies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert G. Kelly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Wien

About this chapter

Cite this chapter

Kelly, R.G. (2016). Molecular Pathways and Animal Models of Tetralogy of Fallot and Double Outlet Right Ventricle. In: Rickert-Sperling, S., Kelly, R., Driscoll, D. (eds) Congenital Heart Diseases: The Broken Heart. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1883-2_33

Download citation

Publish with us

Policies and ethics