Skip to main content

Regeneration and Growth as Modes of Adult Development: The Platyhelminthes as a Case Study

  • Chapter
Evolutionary Developmental Biology of Invertebrates 2

Abstract

Some species of Platyhelminthes have become model systems in which to study whole-body regeneration in adults. Before describing how this capacity is distributed and varies within the phylum, however, it is important to introduce the adult pluripotent stem cells that confer this remarkable ability in flatworms, the so-called neoblasts.

Chapter vignette artwork by Brigitte Baldrian.© Brigitte Baldrian and Andreas Wanninger.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adell T, Marsal M, Saló E (2008) Planarian GSK3s are involved in neural regeneration. Dev Genes Evol 218:105–106

    CAS  Google Scholar 

  • Adell T, Saló E, Boutros M, Bartscherer K (2009) Smed-Evi/Wntless is required for b-catenin-dependent and -independent processes during planarian regeneration. Development 136:905–910

    CAS  PubMed  Google Scholar 

  • Adell T, Cebrià F, Saló E (2010) Gradients in planarian regeneration and homeostasis. Cold Spring Harb Perspect Biol 2(1):a000505

    PubMed Central  PubMed  Google Scholar 

  • Adell T, Cebrià F, Saló F (2014) Planarian totipotent stem cells. In: Calegari F, Waskow C (eds) Stem cells from basic research to therapy, vol 1, Basic stem cell biology, tissue formation during development, and model organisms. CRC Press, Boca Raton, pp 433–472

    Google Scholar 

  • Agata K (2003) Regeneration and gene regulation in planarians. Curr Opin Genet Dev 13:492–496

    CAS  PubMed  Google Scholar 

  • Agata K, Umesono Y (2008) Brain regeneration from pluripotent stem cells in planarian. Philos Trans R Soc Lond B Biol Sci 363:2071–2078

    CAS  PubMed Central  PubMed  Google Scholar 

  • Agata K, Soejima Y, Kato K, Kobayashi C, Umesono Y, Watanabe K (1998) Structure of the planarian central nervous system (CNS) revealed by neuronal cell markers. Zool Sci 15:433–440

    CAS  PubMed  Google Scholar 

  • Almuedo-Castillo M, Saló E, Adell T (2011) Dishevelled is essential for neural connectivity and planar cell polarity in planarians. Proc Natl Acad Sci U S A 108:2813–2818

    CAS  PubMed Central  PubMed  Google Scholar 

  • Almuedo-Castillo M, Sureda-Gómez M, Adell T (2012) Wnt signaling in planarians: new answers to old questions. Int J Dev Biol 56:53–65

    CAS  PubMed  Google Scholar 

  • Artemenko Y, Devreotes PN (2013) Hippo on the move: tumor suppressor regulates adhesion and migration. Cell Cycle 12:535–536

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ashe HL, Briscoe J (2006) The interpretation of morphogen gradients. Development 133:385–394

    CAS  PubMed  Google Scholar 

  • Auladell C, García-Valero J, Baguñà J (1993) Ultrastructural localization of RNA in the chromatoid bodies of undifferentiated cells (neoblasts) in planarians by RNase gold complex technique. J Morphol 216:319–326

    Google Scholar 

  • Baguñà J (1974) A demonstration of a peripheral and a gastrodermal nervous plexus in planarians. Zool Anz 193:240–244

    Google Scholar 

  • Baguñà J (1976) Mitosis in the intact and regenerating planarian Dugesia mediterranea n. sp. I. Mitotic studies during growth, feeding and starvation. J Exp Zool 195:65–80

    Google Scholar 

  • Baguñà J (2012) The planarian neoblast: the rambling history of its origin and some current black boxes. Int J Dev Biol 56:19–37

    PubMed  Google Scholar 

  • Baguñà J, Ballester R (1978) The nervous system in planarians: peripheral and gastrodermal plexuses, pharynx innervation, and the relationship between central nervous system structure and the acoelomate organization. J Morphol 155:237–252

    Google Scholar 

  • Baguñà J, Saló E, Auladell C (1989a) Regeneration and pattern formation in planarians. III. Evidence that neoblasts are totipotent stem-cells and the source of blastema cells. Development 107:77–86

    Google Scholar 

  • Baguñà J, Saló E, Romero R (1989b) Effects of activators and antagonists of the neuropeptides substance P and substance K on cell proliferation in planarians. Int J Dev Biol 33:261–266

    PubMed  Google Scholar 

  • Bailly X, Reichert H, Hartenstein V (2013) The urbilaterian brain revisited: novel insights into old questions from new flatworm clades. Dev Genes Evol 223:149–157

    PubMed  Google Scholar 

  • Bautz A, Schilt J (1986) Somatostatin-like peptide and regeneration capacities in planarians. Gen Comp Endocrinol 64:267–272

    CAS  PubMed  Google Scholar 

  • Bely AE (2010) Evolutionary loss of animal regeneration: pattern and process. Integr Comp Biol 50:515–527

    PubMed  Google Scholar 

  • Bely AE, Nyberg KG (2010) Evolution of animal regeneration: re-emergence of a field. Trends Ecol Evol 25:161–170

    PubMed  Google Scholar 

  • Birnbaum KD, Sánchez-Alvarado A (2008) Slicing across kingdoms: regeneration in plants and animals. Cell 132:697–710

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brehm K (2010) Echinococcus multilocularis as an experimental model in stem cell research and molecular host-parasite interaction. Parasitology 137:537–555

    CAS  PubMed  Google Scholar 

  • Brϕndsted HV (1969) Planarian regeneration. Pergamon Press, Oxford

    Google Scholar 

  • Bueno D, Fernàndez-Rodríguez J, Cardona A, Hernàndez-Hernàndez V, Romero R (2002) A novel invertebrate trophic factor related to invertebrate neurotrophins is involved in planarian body regional survival and asexual reproduction. Dev Biol 252:188–201

    CAS  PubMed  Google Scholar 

  • Bullock TH, Horridge GA (1965) Structure and function in the nervous systems of invertebrates. Freeman, San Francisco

    Google Scholar 

  • Callaerts P, Muñoz-Mármol AM, Glardon S, Castillo E, Sun H, Li WH, Gehring WJ, Saló E (1999) Isolation and expression of a Pax-6 gene in the regenerating and intact planarian Dugesia(G) tigrina. Proc Natl Acad Sci U S A 96:558–563

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cardona A, Hartenstein V, Romero R (2005) The embryonic development of the triclad Schmidtea polychroa. Dev Genes Evol 215:109–131

    PubMed  Google Scholar 

  • Carpenter KS, Morita M, Best JB (1974) Ultrastructure of the photoreceptor of the planarian Dugesia dorotocephala. I. Normal eye. Cell Tissue Res 148:143–158

    CAS  PubMed  Google Scholar 

  • Cebrià F (2007) Regenerating the central nervous system: how easy for planarians! Dev Genes Evol 217:733–748

    PubMed  Google Scholar 

  • Cebrià F (2008) Organization of the nervous system in the model planarian Schmidtea mediterranea: an immunocytochemical study. Neurosci Res 61:375–384

    PubMed  Google Scholar 

  • Cebrià F, Newmark PA (2005) Planarian homologs of netrin and netrin receptor are required for proper regeneration of the central nervous system and the maintenance of nervous system architecture. Development 132:3691–3703

    PubMed  Google Scholar 

  • Cebrià F, Newmark PA (2007) Morphogenesis defects are associated with abnormal nervous system regeneration after roboA RNAi in planarians. Development 134:833–837

    PubMed  Google Scholar 

  • Cebrià F, Kudome T, Nakazawa M, Mineta K, Ikeo K, Gojobori T, Agata K (2002a) The expression of neural-specific genes reveals the structural and molecular complexity of the planarian central nervous system. Mech Dev 116:199–204

    PubMed  Google Scholar 

  • Cebrià F, Nakazawa M, Mineta K, Ikeo K, Gojobori T, Agata K (2002b) Dissecting planarian central nervous system regeneration by the expression of neural-specific genes. Dev Growth Differ 44:135–146

    PubMed  Google Scholar 

  • Cebrià F, Kobayashi C, Umesono Y, Nakazawa M, Mineta K, Ikeo K, Gojobori T, Itoh M, Taira M, Sánchez-Alvarado A, Agata K (2002c) FGFR-related gene nou-darake restricts brain tissues to the head region of planarians. Nature 419:620–624

    PubMed  Google Scholar 

  • Cebrià F, Guo T, Jopek J, Newmark PA (2007) Regeneration and maintenance of the planarian midline is regulated by a slit ortholog. Dev Biol 307:394–406

    PubMed Central  PubMed  Google Scholar 

  • Cebrià F, Adell T, Saló E (2010) Regenerative medicine: lessons from planarians. In: Singh SR (ed) Stem cell, regenerative medicine and cancer. Nova Science Publisher, Hauppauge, NY, pp 29–68

    Google Scholar 

  • Chai G, Ma C, Bao K, Zheng L, Wang X, Sun Z, Salò E, Adell T, Wu W (2010) Complete functional segregation of planarian beta-catenin-1 and -2 in mediating Wnt signaling and cell adhesion. J Biol Chem 285(31):24120–24130

    CAS  PubMed Central  PubMed  Google Scholar 

  • Child CM (1904a) Studies on regulation. V. The relation between the central nervous system and regeneration in Leptoplana: posterior regeneration. J Exp Zool 1:463–512

    Google Scholar 

  • Child CM (1904b) Studies on regulation. VI. The relation between the central nervous system and regeneration in Leptoplana: anterior and lateral regeneration. J Exp Zool 1:513–558

    Google Scholar 

  • Child CM (1911) Studies on the dynamics of morphogenesis and inheritance in experimental reproduction. I The axial gradient in Planaria dorotocephala as a limiting factor in regulation. J Exp Zool 10:265–320

    Google Scholar 

  • Ciani L, Salinas PC (2005) WNTs in the vertebrate nervous system: from patterning to neuronal connectivity. Nat Rev Neurosci 6:351–362

    CAS  PubMed  Google Scholar 

  • Collins JJ 3rd, Hou X, Romanova EV, Lambrus BG, Miller CM, Saberi A, Sweedler JV, Newmark PA (2010) Genome-wide analyses reveal a role for peptide hormones in planarian germline development. PLoS Biol 8:e1000509

    PubMed Central  PubMed  Google Scholar 

  • Collins JJ 3rd, King RS, Cogswell A, Williams DL, Newmark PA (2011) An atlas for Schistosoma mansoni organs and life-cycle stages using cell type-specific markers and confocal microscopy. PLoS Negl Trop Dis 5:e1009

    PubMed Central  PubMed  Google Scholar 

  • Collins JJ 3rd, Wang B, Lambrus BG, Tharp ME, Iyer H, Nemwark PA (2013) Adult somatic stem cells in the human parasite Schistosoma mansoni. Nature 494:476–479

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coultas KA, Zhang SM (2012) In vitro cercariae transformation: comparison of mechanical and nonmechanical methods and observation of morphological changes of detached cercariae tails. J Parasitol 98:1257–1261

    PubMed Central  PubMed  Google Scholar 

  • Cowles MW, Brown DD, Nisperos SV, Stanley BN, Pearson BJ, Zayas RM (2013) Genome-wide analysis of the bHLH gene family in planarians identifies factors required for adult neurogenesis and neuronal regeneration. Development 140:4691–4702

    CAS  PubMed  Google Scholar 

  • Croce JC, McClay DR (2006) The canonical Wnt pathway in embryonic axis polarity. Semin Cell Dev Biol 2:168–174

    Google Scholar 

  • Currie KW, Pearson BJ (2013) Transcription factors lhx1/5-1 and pitx are required for the maintenance and regeneration of serotonergic neurons in planarians. Development 140:3577–3588

    CAS  PubMed  Google Scholar 

  • Dalyell JG (1814) Observations on some interesting phenomena in animal physiology exhibited by several species of planariae. Archibald Constable & Co, Edinburgh

    Google Scholar 

  • De Robertis EM (2009) Spemann’s organizer and the self-regulation of embryonic fields. Mech Dev 126(11–12):925–941

    PubMed Central  PubMed  Google Scholar 

  • De Robertis EM, Kuroda H (2004) Dorsal-ventral patterning and neural induction in Xenopus embryos. Annu Rev Cell Dev Biol 20:285–308

    PubMed Central  PubMed  Google Scholar 

  • Demircan T, Berezikov E (2013) The Hippo pathway regulates stem cells during homeostasis and regeneration of the flatworm Macrostomum lignano. Stem Cells Dev 22:2174–2185

    PubMed  Google Scholar 

  • Dirks U, Gruber-Vodicka HR, Egger B, Ott JA (2012) Proliferation pattern during rostrum regeneration of the symbiotic flatworm Paracatenula galateia: a pulse-chase-pulse analysis. Cell Tissue Res 349:517–525

    PubMed Central  PubMed  Google Scholar 

  • Egger B, Ladurner P, Nimeth K, Gschwentner R, Rieger R (2006) The regeneration capacity of the flatworm Macrostomum lignano—on repeated regeneration, rejuvenization, and the minimal size needed for regeneration. Dev Genes Evol 216:565–577

    CAS  PubMed Central  PubMed  Google Scholar 

  • Egger B, Gschwentner R, Rieger R (2007) Free-living flatworms under the knife: past and present. Dev Genes Evol 217:89–104

    PubMed Central  PubMed  Google Scholar 

  • Egger B, Gschwentner R, Hess MW, Nimeth KT, Adamski Z, Willems M, Rieger R, Salvenmoser W (2009) The caudal regeneration blastema is an accumulation of rapidly proliferating stem cells in the flatworm Macrostomum lignano. BMC Dev Biol 9:41

    PubMed Central  PubMed  Google Scholar 

  • Eriksson KS, Panula P (1994) Gamma-aminobutyric acid in the nervous system of a planarian. J Comp Neurol 345:528–536

    CAS  PubMed  Google Scholar 

  • Extravour CG, Akam M (2003) Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development 130:5869–5884

    Google Scholar 

  • Fairweather I, Halton DW (1991) Neuropeptides in platyhelminths. Parasitology 102:S77–S92

    PubMed  Google Scholar 

  • Fernández-Taboada E, Moritz S, Zeuschner D, Stehling M, Schöler HR, Saló E, Gentile L (2010) Smed-SmB, a member of the LSm protein superfamily, is essential for chromatoid body organization and planarian stem cell proliferation. Development 137:1055–1065

    PubMed  Google Scholar 

  • Fraguas S, Barberán S, Cebrià F (2011) EGFR signalling regulates cell proliferation, differentiation and morphogenesis during planarian regeneration and homeostasis. Dev Biol 56:143–153

    Google Scholar 

  • Fraguas S, Barberán S, Ibarra B, Stöger L, Cebrià F (2012) Regeneration of neuronal cell types in Schmidtea mediterranea: an immunohistochemical and expression study. Int J Dev Biol 56:143–153

    CAS  PubMed  Google Scholar 

  • Fraguas S, Barberán S, Iglesias M, Rodríguez-Esteban G, Cebrià F (2014) egr-4, a target of EGFR signalling is required for the formation of the brain primordia and head regeneration in planarians. Development 141:1835–1847

    CAS  PubMed  Google Scholar 

  • Franquinet R (1979) The role of serotonin and catecholamines in the regeneration of the planaria Polycelis tenuis. J Embryol Exp Morphol 51:85–95

    CAS  PubMed  Google Scholar 

  • Franquinet R, Le Moigne A, Hanoune J (1978) The adenylate cyclase system of planarian Polycelis tenuis. Activation by serotonin and guanine nucleotides. Biochim Biophys Acta 539:88–97

    CAS  PubMed  Google Scholar 

  • Fusaoka E, Inoue T, Mineta K, Agata K, Takeuchi K (2006) Structure and function of primitive immunoglobulin superfamily neural cell adhesion molecules: a lesson from studies on planarian. Genes Cells 11:541–555

    CAS  PubMed  Google Scholar 

  • Garza-Garcia AA, Driscoll PC, Brockes JP (2010) Evidence for the local evolution of mechanisms underlying limb regeneration in salamanders. Integr Comp Biol 50:528–535

    PubMed  Google Scholar 

  • Gaviño MA, Reddien P (2011) A Bmp/Admp regulatory circuit controls maintenance and regeneration of dorsal-ventral polarity in planarians. Curr Biol 21:294–299

    PubMed Central  PubMed  Google Scholar 

  • Gehring WJ (2002) The genetic control of eye development and its implications for the evolution of the various eye-types. Int J Dev Biol 46:65–73

    PubMed  Google Scholar 

  • Gehring WJ, Ikeo K (1999) Pax 6: mastering eye morphogenesis and eye evolution. Trends Genet 15:371–377

    CAS  PubMed  Google Scholar 

  • Gentile L, Cebrià F, Bartscherer K (2011) The planarian flatworm: an in vivo model for stem cell biology and nervous system regeneration. Dis Model Mech 4:12–19

    CAS  PubMed Central  PubMed  Google Scholar 

  • González-Sastre A, Molina MD, Saló E (2012) Inhibitory Smads and bone morphogenetic protein (BMP) modulate anterior photoreceptor cell number during planarian eye regeneration. Int J Dev Biol 56:155–163

    PubMed  Google Scholar 

  • Gremigni V, Miceli C, Puccinelli I (1980) On the role of germ cells in planarian regeneration. A karyological investigation. J Embryol Exp Morpholog 55:53–63

    CAS  Google Scholar 

  • Guan KL, Rao Y (2003) Signalling mechanisms mediating neuronal responses to guidance cues. Nat Rev Neurosci 4:941–956

    CAS  PubMed  Google Scholar 

  • Gumbiner BM, Kim NG (2014) The Hippo-YAP signaling pathway and contact inhibition of growth. J Cell Sci 127:709–717

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guo T, Peters AH, Newmark PA (2006) A Bruno-like gene is required for stem cell maintenance in planarians. Dev Cell 11:159–169

    CAS  PubMed  Google Scholar 

  • Gurley KA, Rink JC, Sánchez-Alvarado A (2008) b-catenin defines head versus tail identity during planarian regeneration and homeostasis. Science 319:323–327

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gurley KA, Elliott SA, Simakov O, Schmidt HA, Holstein TW, Sánchez-Alvarado A (2010) Expression of secreted Wnt pathway components reveals unexpected complexity of the planarian amputation response. Dev Biol 347:24–39

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gustafsson MKS (1987) Immunocytochemical demonstration of neuropeptides and serotonin in the nervous system of adult Schistosoma mansoni. Parasitol Res 74:168–174

    CAS  PubMed  Google Scholar 

  • Gustafsson MKS, Nässel D, Kuusisto A (1993) Immunocytochemical evidence for the presence of substance P-like peptide in Diphyllobothrium dendriticum. Parasitology 106:83–89

    CAS  PubMed  Google Scholar 

  • Gustafsson MKS, Terenina NB, Kreshchenko ND, Reuter M, Maule AG, Halton DW (2001) Comparative study of the spatial relationship between nicotinamide adenine dinucleotide phosphate-diaphorase activity, serotonin immunoreactivity, and GYRFamide immunoreactivity and the musculature of the adult liver fluke, Fasciola hepatica (Digenea, Fasciolidae). J Comp Neurol 429:71–79

    CAS  PubMed  Google Scholar 

  • Gustafsson MKS, Halton DW, Kreshchencko ND, Movsessian SO, Raikova OI, Reuter M, Terenina NB (2002) Neuropeptides in flatworms. Peptides 23:2053–2061

    CAS  PubMed  Google Scholar 

  • Handberg-Thorsager M, Saló E (2007) The planarian nanos-like gene Smednos is expressed in germline and eye precursor cells during development and regeneration. Dev Genes Evol 217:403–411

    CAS  PubMed  Google Scholar 

  • Hartenstein V, Jones M (2003) The embryonic development of the bodywall and nervous system of the cestode flatworm Hymenolepis diminuta. Cell Tissue Res 311:427–435

    PubMed  Google Scholar 

  • Hayashi S, Tamura K, Yokoyama H (2014) Yap1, transcription regulator in the Hippo signaling pathway, is required for Xenopus limb bud regeneration. Dev Biol 388:57–67

    CAS  PubMed  Google Scholar 

  • Hesse R (1897) Untersuchungen über die Organe der Lichtempfindung bei niederen Thieren. II. Die Augen der Plathelminthen. Z Wiss Zool 62:527–582

    Google Scholar 

  • Higuchi S, Hayashi T, Tarui H, Nishimura O, Nishimura K, Shibata N, Sakamoto H, Agata K (2008) Expression and functional analysis of musashi-like genes in planarian CNS regeneration. Mech Dev 125:631–645

    CAS  PubMed  Google Scholar 

  • Holland LZ (2002) Heads or tails? Amphioxus and the evolution of anterior-posterior patterning in deuterostomes. Dev Biol 24:209–228

    Google Scholar 

  • Hori I (1989) Observations on planarian epithelization after wounding. J Submicrosc Cytol Pathol 21:307–315

    CAS  PubMed  Google Scholar 

  • Hubert A, Henderson JM, Ross KG, Cowles MW, Torres J, Zayas RM (2013) Epigenetic regulation of planarian stem cells by the SET1/MLL family of histone methyltransferases. Epigenetics 8:79–91

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hyman LH (1951) The invertebrates. II. Platyhelminthes and rhynchocoela. The acoelomate bilateria. McGraw-Hill, New York

    Google Scholar 

  • Iglesias M, Gomez-Skarmeta JL, Saló E, Adell T (2008) Silencing of Smed-betacatenin1 generates radial-like hypercephalized planarians. Development 135:1215–1221

    CAS  PubMed  Google Scholar 

  • Iglesias M, Almuedo-Castillo M, Aboobaker AA, Saló E (2011) Early planarian brain regeneration is independent of blastema polarity mediated by the Wnt/b-catenin pathway. Dev Biol 358:68–78

    CAS  PubMed  Google Scholar 

  • Inoue T, Kumamoto H, Okamoto K, Umesono Y, Sakai M, Sanchez Alvarado A, Agata K (2004) Morphological and functional recovery of the planarian photosensing system during head regeneration. Zool Sci 21:275–283

    CAS  PubMed  Google Scholar 

  • Inoue T, Hayashi T, Takechi K, Agata K (2007) Clathrin-mediated endocytic signals are required for the regeneration of, as well as homeostasis, in the planarian CNS. Development 134:1679–1689

    CAS  PubMed  Google Scholar 

  • Joffe BI, Kotikova EA (1991) Distribution of catecholamines in turbellarians (with discussion of neuronal homologies in the Platyhelminthes). Stud Neurosci 13:77–113

    CAS  Google Scholar 

  • Joffe BI, Reuter M (1993) The nervous system of Bothriomolus balticus (Proseriata) – a contribution to the knowledge of the orthogon in the Plathelminthes. Zoomorphology 113:113–127

    Google Scholar 

  • Johnson R, Halder G (2014) The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov 13:63–79

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karling TG (1968) On the genus gnosonesima teisinger (Turbellaria). Sarsia 33:81–108

    Google Scholar 

  • Knopf F, Hammond C, Chekuru A, Kurth T, Hans S, Weber CW, Mahatma G, Fisher S, Brand M, Schulte-Merker S, Weidinger G (2011) Bone regenerates via dedifferentiation of osteoblasts in the zebrafish fin. Dev Cell 20:713–724

    CAS  PubMed  Google Scholar 

  • Kobayashi C, Saito Y, Ogawa K, Agata K (2007) Wnt signalling is required for antero-posterior patterning of the planarian brain. Dev Biol 306:714–724

    CAS  PubMed  Google Scholar 

  • Koinuma S, Umesono Y, Watanabe K, Agata K (2003) The expression of planarian brain factor homologs DjFoxG and DjFoxD. Gene Expr Patterns 3:21–27

    CAS  PubMed  Google Scholar 

  • Konsavage WM, Yochum GS (2013) Intersection of Hippo/YAP and Wnt/B-catenin signaling pathways. Acta Biochim Biophys Sin (Shanghai) 45:71–79

    CAS  Google Scholar 

  • Korswagen HC, Herman MA, Clevers HC (2000) Distinct beta-catenins mediate adhesion and signalling functions in C. elegans. Nature 406:527–532

    CAS  PubMed  Google Scholar 

  • Kotikova EA (1986) Comparative characterization of the nervous system of the Turbellaria. Hydrobiologia 132:89–92

    Google Scholar 

  • Kotikova EA (1991) The orthogon of the plathelminthes and main trends of its evolution. Proc Zool Inst St Petersburg 241:88–111

    Google Scholar 

  • Kotikova EA, Raikova OI, Reuter M, Gustafsson MKS (2002) The nervous and muscular systems in the free-living flatworm Castrella truncata (Rhabdocoela): an immunocytochemical and phalloidin fluorescence study. Tissue Cell 34:365–374

    CAS  PubMed  Google Scholar 

  • Koziol U, Krohne G, Brehm K (2013) Anatomy and development of the larval nervous system in Echinococcus multilocularis. Front Zool 10:24

    PubMed Central  PubMed  Google Scholar 

  • Koziol U, Rauschendorfer T, Zanon Rodríguez L, Krhone G, Brehm K (2014) The unique stem cell system of the immortal larva of the human parasite Echinococcus multilocularis. Evodevo 5:10

    PubMed Central  PubMed  Google Scholar 

  • Kragl M, Knapp D, Nacu E, Khatta S, Maden M, Epperlein HH, Tanaka EM (2009) Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 460:60–65

    CAS  PubMed  Google Scholar 

  • Kreshchenko ND, Reuter M, Sheiman IM, Halton DW, Johnston RN, Shaw C, Gustafsson MKS (1999) Relationship between musculature and nervous system in the regenerating pharynx in Girardia tigrina (Plathelminthes). Invertebr Reprod Dev 35:109–125

    Google Scholar 

  • Kumar A, Brockes JP (2012) Nerve dependence in tissue, organ, and appendage regeneration. Trends Neurosci 35:691–699

    CAS  PubMed  Google Scholar 

  • Kumar A, Godwin JW, Gates PB, Garza-Garcia AA, Brockes JP (2007) Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate. Science 318:772–777

    CAS  PubMed Central  PubMed  Google Scholar 

  • Labbé RM, Irimia M, Currie KW, Lin A, Zhu SJ, Brown DD, Ross EJ, Voisin V, Bader GD, Blencowe BJ, Pearson BJ (2012) A comparative transcriptomic analysis reveals conserved features of stem cell pluripotency in planarians and mammals. Stem Cells 30:1734–1745

    PubMed Central  PubMed  Google Scholar 

  • Ladurner P, Mair GR, Reiter D, Salvenmoser W, Rieger RM (1997) Serotonergic nervous system of two macrostomid species: recent or ancient divergence? Invert Biol 116:178–191

    Google Scholar 

  • Ladurner P, Rieger R, Baguñà J (2000) Spatial distribution and differentiation potential of stem cells in hatchlings and adults in the marine platyhelminth Macrostomum sp: a bromodeoxyuridine analysis. Dev Biol 226:231–241

    CAS  PubMed  Google Scholar 

  • Lapan SW, Reddien PW (2011) dlx and sp6-9 control optic cup regeneration in a prototypic eye. PLoS Genet 7:e1002226

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lapan SW, Reddien PW (2012) Transcriptome analysis of the planarian eye identifies ovo as a specific regulator of eye regeneration. Cell Rep 2:294–307

    CAS  PubMed Central  PubMed  Google Scholar 

  • Laumer CE, Giribet G (2014) Inclusive taxon sampling suggest a single, stepwise origin of ectolecithality in Platyhelminthes. Biol J Linn Soc 111:570–588

    Google Scholar 

  • Leksomboon R, Chaijaroonkhanarak W, Arunyanart C, Umka J, Jones MK, Sripa B (2012) Organization of the nervous system in Opisthorchis viverrini investigated by histochemical and immunohistochemical study. Parasitol Int 61:107–111

    CAS  PubMed  Google Scholar 

  • Lender T (1955) Some properties of the organisine of eye regeneration in the planaria Polycelis nigra. C R Heabd Seances Acad Sci 240:1726–1728

    CAS  Google Scholar 

  • Lewis J, Slack JM, Wolpert L (1977) Thresholds in development. J Theor Biol 65:579–590

    CAS  PubMed  Google Scholar 

  • Li VS, Clevers H (2013) Intestinal regeneration: YAP-tumor suppressor and oncoprotein? Curr Biol 23:R110–R112

    CAS  PubMed  Google Scholar 

  • Lin AY, Pearson BJ (2014) Planarian yorkie/YAP functions to integrate adult stem cell proliferation, organ homeostasis and maintenance of axial patterning. Development 141:1197–1208

    CAS  PubMed  Google Scholar 

  • Lindholm AM, Reuter M, Gustafsson MKS (1998) The NADPH-diaphorase staining reaction in relation to the aminergic and peptidergic nervous system and the musculature of adult Diphyllobothrium dendriticum. Parasitology 117:283–292

    CAS  PubMed  Google Scholar 

  • Liu SY, Selck C, Friedrich B, Lutz R, Vila-Farré M, Dahl A, Brandl H, Lakshmanaperumal N, Henry I, Rink JC (2013) Reactivating head regrowth in a regeneration-deficient planarian species. Nature 500:81–84

    CAS  PubMed  Google Scholar 

  • Logan CY, Miller JR, Ferkowicz MJ, McClay DR (1999) Nuclear beta-catenin is required to specify vegetal cell fates in the sea urchin embryo. Development 126:345–357

    CAS  PubMed  Google Scholar 

  • Mackay DR, Hu M, Li B et al (2006) The mouse Ovol2 gene is required for cranial neural tube development. Dev Biol 291:38–52

    CAS  PubMed Central  PubMed  Google Scholar 

  • MacRae EK (1964) Observations on the fine structure of photoreceptor cells in the planarian Dugesia tigrina. J Ultrastruct Res 10:334–349

    CAS  PubMed  Google Scholar 

  • Mannini L, Rossi L, Deri P, Gremigni V, Salvetti A, Salo E, Batistoni R (2004) Djeyes absent (Djeya) controls prototypic planarian eye regeneration by cooperating with the transcription factor Djsix-1. Dev Biol 269:346–359

    CAS  PubMed  Google Scholar 

  • Marsal M, Pineda D, Saló E (2003) Gtwnt-5 a member of the wnt family expressed in a subpopulation of the nervous system of the planarian Girardia tigrina. Gene Expr Patterns 3:489–495

    CAS  PubMed  Google Scholar 

  • Martín-Durán JM, Romero R (2011) Evolutionary implications of morphogenesis and molecular patterning of the blind gut in the planarian Schmidtea polychroa. Dev Biol 352:164–176

    PubMed  Google Scholar 

  • Martín-Durán JM, Amaya E, Romero R (2010) Germ layer specification and axial patterning in the embryonic development of the freshwater planarian Schmidtea polychroa. Dev Biol 340:145–158

    PubMed  Google Scholar 

  • Martín-Durán JM, Monjo F, Romero R (2012) Morphological and molecular development of the eyes during embryogenesis of the freshwater planarian Schmidtea polychroa. Dev Genes Evol 222:45–54

    PubMed  Google Scholar 

  • März M, Seebeck F, Bartscherer K (2013) A Pitx transcription factor controls the establishment and maintenance of the serotonergic lineage in planarians. Development 140:4499–4509

    PubMed  Google Scholar 

  • Maule AG, Shaw C, Halton DW, Brennan GP, Johnston CF, Moore S (1992) Neuropeptide F (Moniezia expansa): localization and characterization using specific antisera. Parasitology 105:505–512

    CAS  PubMed  Google Scholar 

  • McVeigh P, Mair GR, Novozhilova E, Day A, Zamanian M, Marks NJ, KImber MJ, Day TA, Maule AG (2011) Schistosome I/Lamides—a new family of bioactive helminth neuropeptides. Int J Parasitol 41:905–913

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meinhardt H (1978) Space-dependent cell determination under the control of morphogen gradient. J Theor Biol 74:307–321

    CAS  PubMed  Google Scholar 

  • Merchant MT, Corella C, Willms K (1997) Autoradiographic analysis of the germinative tissue in evaginated Taenia solium metacestodes. J Parasitol 83:363–367

    CAS  PubMed  Google Scholar 

  • Miljkovic-Licina M, Chera S, Ghila L, Galliot B (2007) Head regeneration in wild-type hydra requires de novo neurogenesis. Development 134:1191–1201

    CAS  PubMed  Google Scholar 

  • Mineta K, Nakazawa M, Cebrià F, Ikeo K, Agata K, Gojobori T (2003) Origin and evolutionary process of the CNS elucidated by comparative genomics analysis of planarian ESZTs. Proc Natl Acad Sci U S A 100:7666–7671

    PubMed Central  PubMed  Google Scholar 

  • Molina MD, Saló E, Cebrià F (2007) The BMP pathway is essential for re-specification and maintenance of the dorsoventral axis in regenerating and intact planarians. Dev Biol 311:79–94

    CAS  PubMed  Google Scholar 

  • Molina MD, Saló E, Cebrià F (2009) Expression pattern of the expanded noggin gene family in the planarian Schmidtea mediterranea. Gene Expr Patterns 9:246–253

    PubMed  Google Scholar 

  • Molina MD, Saló M, Cebrià F (2011a) Organizing the DV axis during planarian regeneration. Commun Integr Biol 4:498–500

    PubMed Central  PubMed  Google Scholar 

  • Molina MD, Neto A, Maeso I, Gómez-Skarmeta JL, Saló E, Cebrià F (2011b) Noggin and noggin-like genes control dorsoventral axis regeneration in planarians. Curr Biol 21:300–305

    CAS  PubMed  Google Scholar 

  • Moraczewski J (1977) Asexual reproduction and regeneration of Catenula (Turbellaria, Archoophora). Zoomorphology 88:65–80

    Google Scholar 

  • Morgan TH (1898) Experimental studies of the regeneration of Planaria maculata. Arch Entwickelungsmech Org 7:364–397

    Google Scholar 

  • Morgan TH (1900) Regeneration in planarians. Arch Entwicklungsmech Org 10:58–119

    Google Scholar 

  • Morgan TH (1901) Regeneration. Macmillan, New York

    Google Scholar 

  • Morgan TH (1904) Polarity and axial heteromorphosis. Am Nat 38:502–505

    Google Scholar 

  • Morgan TH (1905) “Polarity” considered as a phenomenon of gradation of materials. J Exp Zool 2:495–506

    Google Scholar 

  • Morris J, Ladurner P, Rieger R, Pfister D, Del Mar De Miguel-Bonet M, Jacobs D, Hartenstein V (2006) The Macrostomum lignano EST database as a molecular resource for studying platyhelminth development and phylogeny. Dev Genes Evol 216:695–707

    CAS  PubMed  Google Scholar 

  • Nakazawa M, Cebria F, Mineta K, Ikeo K, Agata K, Gojobori T (2003) Search for the evolutionary origin of a brain: planarian brain characterized by microarray. Mol Biol Evol 20:784–791

    CAS  PubMed  Google Scholar 

  • Newmark PA, Sánchez-Alvarado A (2000) Bromodeoxyuridine specifically labels the regenerative stem cells of planarians. Dev Biol 220:142–153

    CAS  PubMed  Google Scholar 

  • Newmark PA, Sánchez-Alvarado A (2002) Not your father’s planarian: a classic model enters the era of functional genomics. Nat Rev Genet 3:210–219

    CAS  PubMed  Google Scholar 

  • Nimeth KT, Egger B, Rieger R, Salvenmoser W, Peter R, Gschwentner R (2007) Regeneration in Macrostomum lignano (Platyhelminthes): cellular dynamics in the neoblast stem cell system. Cell Tissue Res 327:637–646

    CAS  PubMed  Google Scholar 

  • Nishimura K, Kitamura Y, Inoue T, Umesono Y, Yoshimoto K, Takeuchi K, Taniguchi T, Agata K (2007a) Identification and distribution of tryptophan hydroxylase (TPH)-positive neurons in the planarian Dugesia japonica. Neurosci Res 59:101–106

    CAS  PubMed  Google Scholar 

  • Nishimura K, Kitamura Y, Inoue T, Umesono Y, Sano S, Yoshimoto K, Inden M, Takata K, Taniguchi T, Shimohama S, Agata K (2007b) Reconstruction of dopaminergic neural network and locomotion function in planarian regenerates. Dev Neurobiol 67:1059–1078

    CAS  PubMed  Google Scholar 

  • Nishimura K, Kitamura Y, Inoue T, Umesono Y, Yoshimoto K, Taniguchi T, Agata K (2008a) Characterization of tyramine beta-hydroxylase in planarian Dugesia japonica: cloning and expression. Neurochem Int 53:184–192

    CAS  PubMed  Google Scholar 

  • Nishimura K, Kitamura Y, Umesono Y, Takeuchi K, Takata K, Taniguchi T, Agata K (2008b) Identification of glutamic acid decarboxylase gene and distribution of GABAergic nervous system in the planarian Dugesia japonica. Neuroscience 153:1103–1114

    CAS  PubMed  Google Scholar 

  • Nogi T, Levin M (2005) Characterization of innexin gene expression and functional roles of gap-junctional communication in planarian regeneration. Dev Biol 287:314–335

    CAS  PubMed  Google Scholar 

  • O’Donnell M, Chance RK, Bashwa GJ (2009) Axon growth and guidance: receptor regulation and signal transduction. Ann Rev Neurosci 32:383–412

    PubMed  Google Scholar 

  • Ogawa K, Ishihara S, Saito Y, Mineta K, Nakazawa M, Ikeo K, Gojobori T, Watanbe K, Agata K (2002a) Induction of a noggin-like gene by ectopic DV interaction during planarian regeneration. Dev Biol 250:59–70

    CAS  PubMed  Google Scholar 

  • Ogawa K, Kobayashi C, Hayashi T, Orii H, Watanabe K, Agata K (2002b) Planarian fibroblasts growth factor receptor homologs expressed in stem cells and cephalic ganglions. Dev Growth Differ 44:191–204

    CAS  PubMed  Google Scholar 

  • Onal P, Grün D, Adamidi C, Rybak A, Solana J, Mastrobuoni G, Wang Y, Rahn HP, Chen W, Kempa S, Ziebold U, Rajewsky N (2012) Gene expression of pluripotency determinants is conserved between mammalian and planarian stem cells. EMBO J 31:2755–2769

    PubMed Central  PubMed  Google Scholar 

  • Orii H, Watanabe K (2007) Bone morphogenetic protein is required for dorso-ventral patterning in the planarian Dugesia japonica. Dev Growth Differ 49:345–349

    CAS  PubMed  Google Scholar 

  • Orii H, Katayama T, Sakurai T, Agata K, Watanabe K (1998) Immunohistochemical detection of opsins in turbellarians. Hydrobiologia 383:183–187

    CAS  Google Scholar 

  • Oviedo NJ, Morokuma J, Walentek P, Kema IP, Gu MB, Ahn JM, Hwang JS, Gojobori T, Levin M (2010) Long-range neural and gap junction protein-mediated cues control polarity during planarian regeneration. Dev Biol 339:188–199

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pallas PS (1774) Spicilegia zoological quibus novae imprimis et obscurae animaliu. Speciosiconibus atque conamentariis illustrator. Fasc. X, Berolini

    Google Scholar 

  • Palmberg I (1986) Cell migration and differentiation during wound healing and regeneration in Microstomum lineare (Turbellaria). Hydrobiologia 132:181–188

    Google Scholar 

  • Pan JZ, Halton DW, Shaw C, Maule AG, Johnston CF (1994) Serotonin and neuropeptide immunoreactivities in the intramolluscan stages of three marine trematode parasites. Parasitol Res 80:388–395

    CAS  PubMed  Google Scholar 

  • Pedersen KJ (1976) Scanning electron microscopical observations on epidermal wound healing in the planarian Dugesia tigrina. Wilhelm Rouxs Arch Dev Biol 179:251–273

    Google Scholar 

  • Petersen CP, Reddien PW (2008) Smed-bcatenin-1 is required for anteroposterior blastema polarity in planarian regeneration. Science 319:327–330

    CAS  PubMed  Google Scholar 

  • Petersen CP, Reddien PW (2009) A wound-induced Wnt expression program controls planarian regeneration polarity. Proc Natl Acad Sci U S A 106:17061–17066

    CAS  PubMed Central  PubMed  Google Scholar 

  • Petersen CP, Reddien PW (2011) Polarized notum activation at wounds inhibits Wnt function to promote planarian head regeneration. Science 332:852–855

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peterson KJ, Eernisse DJ (2001) Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences. Evol Dev 3:170–205

    CAS  PubMed  Google Scholar 

  • Peterson KJ, Cotton JA, Gehling JG, Pisani D (2008) The Ediacaran emergence of bilaterians: congruence between the genetic and the geological fossil records. Phil Trans Soc B 363:1435–1443

    Google Scholar 

  • Philippe H, Brinkmann H, Copley RR, Moroz LL, Nakano H, Poustka AJ, Wallberg A, Peterson KJ, Telford MJ (2011) Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470:255–258

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pichaud F, Treisman J, Desplan C (2001) Reinventing a common strategy for patterning the eye. Cell 105:9–12

    CAS  PubMed  Google Scholar 

  • Pineda D, Saló E (2002) Planarian Gtsix3, a member of the Six/so gene family, is expressed in brain branches but not in eye cells. Mech Dev 119(suppl1):S161–S171

    Google Scholar 

  • Pineda D, Gonzalez J, Callaerts P, Ikeo K, Gehring WJ, Saló E (2000) Searching for the prototypic eye genetic network: Sine oculis is essential for eye regeneration in planarians. Proc Natl Acad Sci U S A 97:4525–4529

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pineda D, Gonzalez J, Marsal M, Saló E (2001) Evolutionary conservation of the initial eye genetic pathway in planarians. Belg J Zool 131:77–82

    Google Scholar 

  • Pineda D, Rossi L, Batistoni R, Salvetti A, Marsal M, Gremigni V, Falleni A, Gonzalez-Linares J, Deri P, Saló E (2002) The genetic network of prototypic planarian eye regeneration is Pax6 independent. Development 129:1423–1434

    CAS  PubMed  Google Scholar 

  • Poss KD (2010) Advances in understanding tissue regenerative capacity and mechanisms in animals. Nat Rev Genet 11:710–722

    CAS  PubMed Central  PubMed  Google Scholar 

  • Randolph H (1892) The regeneration of the tail in Lumbriculus. J Morphol 7:317–344

    Google Scholar 

  • Randolph H (1897) Observations and experiments on regeneration in planarians. Arch EntwMech Org 5:352–372

    Google Scholar 

  • Rawlinson KA (2010) Embryonic and post-embryonic development of the polyclad flatworm Maritigrella crozieri; implications for the evolution of spiralian life history traits. Front Zool 7:12

    PubMed Central  PubMed  Google Scholar 

  • Reddien PW (2011) Constitutive gene expression and the specification of tissue identity in adult planarian biology. Trends Genet 27:277–285

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reddien PW (2013) Specialized progenitors and regeneration. Development 140:951–957

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reddien PW, Oviedo NJ, Jennings JR, Jenkin JC, Sánchez Alvarado A (2005) SMEDWI-2 is a PIWI-like protein that regulates planarian stem cells. Science 310:1327–1330

    CAS  PubMed  Google Scholar 

  • Reddien PW, Bermange AL, Kicza AM, Sanchez Alvarado A (2007) BMP signaling regulates the dorsal planarian midline and is needed for asymmetric regeneration. Development 134:4043–4051

    CAS  PubMed  Google Scholar 

  • Reginensi A, Scott RP, Gregorieff A, Bagherie-Lachidan M, Chung C, Lim DS, Pawson T, Wrana J, McNeill H (2013) Yap- and Cdc42-dependent nephrogenesis and morphogenesis during mouse kidney development. PLoS Genet 9:e1003380

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reisinger E (1972) Die Evolution des Orthogons der Spiralier und das Archicoelomatenproblem. Z Zool Syst Evolutionforsch 10:1–43

    Google Scholar 

  • Reiter D, Wikgren M (1991) Immunoreactivity to a specific echinoderm neuropeptide in the nervous system of the flatworm Macrostomum hystricinum marinum (Turbellaria, Macrostomida). Hydrobiologia 227:229

    Google Scholar 

  • Reuter M (1988) Development and organization of nervous system visualized by immunocytochemistry in three flatworm species. Fortschr Zool 36:181–184

    Google Scholar 

  • Reuter M (1994) Substance P immunoreactivity in sensory structures and the central and pharyngeal nervous system of Stenostomum leucops (Catenulida) and Microstomum lineare (Macrostomida). Cell Tissue Res 276:173–180

    Google Scholar 

  • Reuter M, Gustafsson MKS (1995) The flatworm nervous system: pattern and phylogeny. In: Breidbach O, Kutsch W (eds) The nervous systems of invertebrates: an evolutionary and comparative approach. Birkhäuser Verlag, Basel, pp 25–59

    Google Scholar 

  • Reuter M, Gustafsson MKS (1996) Neuronal signal substances in asexual multiplication and development in flatworms. Cell Mol Neurobiol 16:591–616

    CAS  PubMed  Google Scholar 

  • Reuter M, Halton DW (2001) Comparative neurobiology of Platyhelminthes. In: Littlewood TJ, Bray RA (eds) The interrelationships of Platyhelminthes. Academic, London, pp 239–259

    Google Scholar 

  • Reuter M, Kreshchenko N (2004) Flatworm asexual multiplication implicates stem cells and regeneration. Can J Zool 82:334–356

    Google Scholar 

  • Reuter M, Palmberg I (1989) Development and differentiation of neuronal subsets in asexually reproducing Microstomum lineare. Immunocytochemistry of 5-HT, RF-amide and SCPv. Histochemistry 91:123–131

    CAS  PubMed  Google Scholar 

  • Reuter M, Wikgren M, Lehtonen M (1986) Immunocytochemical demonstration of 5-HT-like and FMRF-amide-like substances in whole mounts of Microstomum lineare (Turbellaria). Cell Tissue Res 246:7–12

    CAS  Google Scholar 

  • Reuter M, Gustafsson MKS, Sheiman IM, Terenina N, Halton DW, Maule AG, Shaw C (1995a) The nervous system of Tricladida. II. Neuroanatomy of Dugesia tigrina (Paludicola, Dugesiidae): an immunocytochemical study. Invertebr Neurosci 1:133–143

    CAS  Google Scholar 

  • Reuter M, Gustafsson MKS, Sahlgren C, Halton DW, Maule AG, Shaw C (1995b) The nervous system of Tricladida. I. Neuroanatomy of Procerodes littoralis (Maricola, Procerodidae): an immunocytochemical study. Invertebr Neurosci 1:113–122

    CAS  Google Scholar 

  • Reuter M, Maule AG, Halton DW, Gustafsson MS, Shaw C (1995c) The organization of the nervous system in Plathelminthes. The neuropeptide F-immunoreactivity pattern in Catenulida, Macrostomida, Proseriata. Zoomorphology 115:83–97

    Google Scholar 

  • Reuter M, Gustafsson MKS, Mäntylä K, Grimmelikhuijzen CJP (1996a) The nervous system of Tricladida. III. Neuroanatomy of Dendrocoelum lacteum and Polycelis tenuis (Plathelminthes, Paludicola): an immunocytochemical study. Zoomorphology 116:111–122

    Google Scholar 

  • Reuter M, Sheiman IM, Gustafsson MKS, Halton DW, Maule AG, Shaw C (1996b) Development of the nervous system in Dugesia tigrina during regeneration after fission and decapitation. Invertebr Reprod Dev 29:199–211

    Google Scholar 

  • Reuter M, Raikova OI, Gustafsson MKS (2001) Patterns in the nervous and muscle systems in lower flatworms. Belg J Zool 131:47–53

    Google Scholar 

  • Reversade B, De Robertis EM (2005) Regulation of ADMP and BMP2/4/7 at opposite embryonic poles generates a self-regulating morphogenetic field. Cell 123:1147–1160

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ribeiro P, El-Shehabi F, Patocka N (2005) Classical transmitters and their receptors in flatworms. Parasitology 131:S19–S40

    CAS  PubMed  Google Scholar 

  • Rieger R, Tyler S, Smith JPS III, Rieger G (1991) Platyhelminthes: Turbellaria. In: Harrison FW, Bogitsh BJ (eds) Microscopic anatomy of invertebrates, vol 3. Wiley-Liss, New York, pp 7–140

    Google Scholar 

  • Rink J (2013) Stem cell systems and regeneration in planaria. Dev Genes Evol 223:67–84

    PubMed Central  PubMed  Google Scholar 

  • Riutort M, Álvarez-Presas M, Lázaro E, Solà E, Paps J (2012) Evolutionary history of the Tricladida and the Platyhelminthes: an up-to-date phylogenetic and systematic account. Int J Dev Biol 56:5–17

    PubMed  Google Scholar 

  • Rock JM, Lim D, Stach L, Ogrodowicz RW, Keck JM, Jones MH, Wong CC, Yates JR 3rd, Winey M, Smerdon SJ, Yaffe MB, Amon A (2013) Activation of the yeast Hippo pathway by phosphorylation-dependent assembly of signaling complexes. Science 340:871–875

    CAS  PubMed  Google Scholar 

  • Rossi L, Batistoni R, Salvetti A, Deri P, Bernini F, Andreoli I, Falleni A, Gremigni V (2001) Molecular aspects of cell proliferation and neurogenesis in planarians. Belg J Zool 131:83–87

    Google Scholar 

  • Rossi L, Deri P, Andreoli I, Gremigni V, Salvetti A, Batistoni R (2003) Expression of DjXnp, a novel member of the SNF2-like ATP-dependent chromatin remodelling genes, in intact and regenerating planarians. Int J Dev Biol 47:293–298

    CAS  PubMed  Google Scholar 

  • Rossi L, Salvetti A, Marincola FM, Lena A, Deri P, Mannini L, Batistoni R, Wang E, Gremigni V (2007) Deciphering the molecular machinery of stem cells: a look at the neoblast gene expression profile. Genome Biol 8:R62

    PubMed Central  PubMed  Google Scholar 

  • Rouhana L, Shibata N, Nishimura O, Agata K (2010) Different requirements for conserved post-transcriptional regulators in planarian regeneration and stem cell maintenance. Dev Biol 341:429–443

    CAS  PubMed  Google Scholar 

  • Ruiz-Trillo I, Riutort M, Littlewood DTJ, Herniou EA, Baguñà J (1999) Acoel flatworms: earliest extant bilaterian metazoans, not members of Platyhelminthes. Science 283:1919–1923

    CAS  PubMed  Google Scholar 

  • Ruppert EE, Schreiner SP (1980) Ultrastructure and potential significance of cerebral light refracting bodies of Stenostomum virginianum (Turbellaria, Catenulida). Zoomorphology 96:21–31

    Google Scholar 

  • Saló E (2006) The power of regeneration and the stem-cell kingdom: freshwater planarians (Platyhelminthes). Bioessays 28:546–559

    PubMed  Google Scholar 

  • Saló E, Baguñà J (1984) Regeneration and pattern formation in planarians. I. The pattern of mitosis in anterior and posterior regeneration in Dugesia (G) tigrina, and a new proposal for blastema formation. J Embryol Exp Morphol 83:63–80

    PubMed  Google Scholar 

  • Saló E, Batistoni R (2008) Planarian eye, a simple and plastic system with great regenerative capacity. In: Tsonis PA (ed) Animal models in eye research. Elsevier, Amsterdam

    Google Scholar 

  • Saló E, Pineda D, Marsal M, González J, Gremigni V, Batistoni R (2002) Genetic network of the eye in Platyhelminthes: expression and functional analysis of some players during planarian regeneration. Gene 287:67–74

    PubMed  Google Scholar 

  • Salvini-Plawen LV, Mayr E (1977) On the evolution of photoreceptors and eyes. Evol Biol 10:207–263

    Google Scholar 

  • Sánchez Alvarado A, Newmark PA (1999) Double-stranded RNA specifically disrupts gene expression during planarian regeneration. Proc Natl Acad Sci U S A 96:5049–5054

    PubMed Central  PubMed  Google Scholar 

  • Schneider SQ, Finnerty JR, Martindale MQ (2003) Protein evolution: structure-function relationships of the oncogene beta-catenin in the evolution of multicellular animals. J Exp Zool B Mol Dev Evol 295:25–44

    PubMed  Google Scholar 

  • Scimone ML, Srivastava M, Bell GW, Reddien PW (2011) A regulatory program for excretory system regeneration in planarians. Development 38:4387–4398

    Google Scholar 

  • Sebé-Pedrós A, de Mendoza A, Lang BF, Degnan BM, Ruiz-Trillo I (2011) Unexpected repertoire of metazoan transcription factors in the unicellular holozoan Capsaspora owczarzaki. Mol Biol Evol 28:1241–1254

    PubMed Central  PubMed  Google Scholar 

  • Semmler H, Chiodin M, Bailly X, Martinez P, Wanninger A (2010) Steps towards a centralized nervous system in basal bilaterians: insights from neurogenesis of the acoel Symsagittifera roscoffensis. Dev Growth Differ 52:701–713

    CAS  PubMed  Google Scholar 

  • Senft AW, Weller TH (1956) Growth and regeneration of Schistosoma mansoni in vitro. Proc Soc Exp Biol Med 93:16–19

    CAS  PubMed  Google Scholar 

  • Sheiman IM, Kreshchenko ND, Sedelnikov ZV, Groznyi AV (2004) Morphogenesis in planarians Dugesia tigrina. Ontogenez 35:285–290

    CAS  PubMed  Google Scholar 

  • Sickes JM, Newmark PA (2013) Restoration of anterior regeneration in a planarian with limited regenerative ability. Nature 500:77–80

    Google Scholar 

  • Singer M, Craven L (1948) The growth and morphogenesis of the regenerating forelimb of adult Triturus following denervation at various stages of development. J Exp Zool 108:279–308

    CAS  PubMed  Google Scholar 

  • Sivickis PB (1930) A quantitative study of regeneration along the main axis of the triclad body. Arch Zool Ital 16:430–449

    Google Scholar 

  • Solana J (2013) Closing the circle of germline and stem cells: the primordial stem cell hypothesis. Evodevo 4:2

    PubMed Central  PubMed  Google Scholar 

  • Sopott-Ehlers B (1982) Ultrastruktur potentiell photorezeptorischer Zellen unterschiedlicher Organisation bei einem Proseriat (Platyhelminthes). Zoomorphology 101:165–176

    Google Scholar 

  • Sopott-Ehlers B, Ehlers U (2003) Eyes covered by mitochondrial lenses in Petaliella spiracauda and Ptychopera purasjokii (Plathelminthes, Rhabdocoela, Trigonostominae). Ultrastructural features and phylogenetic implications. J Submicrosc Cytol Pathol 35:415–421

    CAS  PubMed  Google Scholar 

  • Sopott-Ehlers B, Kearn GC, Ehlers U (2001) Evidence for the mitochondrial origin of the eye lenses in embryos of Entobdella soleae (Plathelminthes, Monogenea). Parasitol Res 87:421–427

    CAS  PubMed  Google Scholar 

  • Sperry PJ, Ansevin KD, Tittel FK (1973) The inductive role of the nerve cord in regeneration of isolated postpharyngeal body sections of Dugesia dorotocephala. J Exp Zool 186:159–174

    CAS  PubMed  Google Scholar 

  • Spiliotis M, Lechner S, Tappe D, Scheller C, Krohne G, Brehm K (2008) Transient transfection of Echinococcus multilocularis primary cells and complete in vitro regeneration of metacestode vesicles. Int J Parasitol 38:1025–1039

    CAS  PubMed  Google Scholar 

  • Srivastava M, Mazza-Curll KL, van Wolfswinkel JC, Reddien PW (2014) Whole-body acoel regeneration is controlled by Wnt and Bmp-Admp signalling. Curr Biol 24:1107–1113

    CAS  PubMed  Google Scholar 

  • Stéphan-Dubois F, Lender Th (1956) Corrélation humorales dans le regeneration des planaires paludicoles. Ann Sci Nat Zool 11 ser

    Google Scholar 

  • Tamamaki N (1990) Evidence for the phagocytotic removal of photoreceptive membrane by pigment cells in the eye of the planarian, Dugesia japonica. Zool Sci 7:385–393

    Google Scholar 

  • Tanaka EM, Reddien PW (2011) The cellular basis for animal regeneration. Dev Cell 21:172–185

    CAS  PubMed Central  PubMed  Google Scholar 

  • Teshirogi W, Ishida S, Yamazaki H (1977) Regenerative capacities of transverse pieces in the two species of freshwater planarian, Dendrocoelopsis lactea and Polycelis sapporo. Sci Rep Hirosaki Univ 24:55–72

    Google Scholar 

  • Umesono Y, Watanabe K, Agata K (1999) Distinct structural domains in the planarian brain defined by the expression of evolutionarily conserved homeobox genes. Dev Genes Evol 209:31–39

    CAS  PubMed  Google Scholar 

  • Umesono Y, Tasaki J, Nishimura K, Inoue T, Agata K (2011) Regeneration in an evolutionarily primitive brain—the planarian Dugesia japonica model. Eur J Neurosci 34:863–869

    PubMed  Google Scholar 

  • Umesono Y, Tasaki J, Nishimura Y, Hrouda M, Kawaguchi E, Yazawa S, Nishimura O, Hosoda K, Inoue T, Agata K (2013) The molecular logic for planarian regeneration along the anterior-posterior axis. Nature 500:73–76

    CAS  PubMed  Google Scholar 

  • Verdoodt F, Bert W, Couvreur M, De Mulder K, Willems M (2012) Proliferative response of the stem cell system during regeneration of the rostrum in Macrostomum lignano (Platyhelminthes). Cell Tissue Res 347:397–406

    PubMed  Google Scholar 

  • Vorontsova MA, Liosner LD (1960) Asexual propagation and regeneration. Pergamon Press, London

    Google Scholar 

  • Wagner DE, Wang IE, Reddien PW (2011) Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration. Science 332:811–816

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wagner DE, Ho JJ, Reddien PW (2012) Genetic regulators of a pluripotent adult stem cell system in planarians identified by RNAi and clonal analysis. Cell Stem Cell 10:299–311

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang B, Collins JJ 3rd, Newmark PA (2013) Functional characterization of neoblast-like stem cells in larval Schistosoma mansoni. Elife 2:e00768

    PubMed Central  PubMed  Google Scholar 

  • Wenemoser D, Reddien PW (2010) Planarian regeneration involves distinct stem cell responses to wounds and tissue absence. Dev Biol 344:979–991

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wikramanayake AH, Hong M, Lee PN, Pang K, Byrum CA, Bince JM, Xu R, Martindale MQ (2003) An ancient role for nuclear beta-catenin in the evolution of axial polarity and germ layer segregation. Nature 426:446–450

    CAS  PubMed  Google Scholar 

  • Wolff E, Lender T (1950) Sur le role organisateur du cerveau dans la regeneration des yeux chez une planaire d’eau douce. C R Acad Sci 230:2238–2239

    Google Scholar 

  • Xin M, Kim Y, Sutherland LB, Murakami M, Qi X, McAnally J, Porrello ER, Mahmoud AI, Tan W, Shelton JM, Richardson JA, Sadek HA, Bassel-Duby R, Olson EN (2013) Hippo pathway effector Yap promotes cardiac regeneration. Proc Natl Acad Sci U S A 110:13839–13844

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yazawa S, Umesono Y, Hayashi T, Tarui H, Agata K (2009) Planarian Hedgehog/Patched establishes anterior-posterior polarity by regulating Wnt signaling. Proc Natl Acad Sci U S A 106:22329–22334

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshikawa S, McKinnon RD, Kokel M, Thomas JB (2003) Wnt-mediated axon guidance via the Drosophila Derailed receptor. Nature 422:583–588

    CAS  PubMed  Google Scholar 

  • Younossi-Hartenstein A, Hartenstein V (2000) The embryonic development of the polyclad flatworm Imogine mcgrathi. Dev Genes Evol 210:383–398

    CAS  PubMed  Google Scholar 

  • Younossi-Hartenstein A, Ehlers U, Hartenstein V (2000) Embryonic development of the nervous system of the rhabdocoel flatworm Mesostoma lingua (Abilgaard 1789). J Comp Neurol 16:461–474

    Google Scholar 

  • Ypsilanti AR, Zagar Y, Chédotal A (2010) Moving away from the midline: new developments for Slit and Robo. Development 137:1939–1952

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Bernhard Egger and Jim Collins and Phil Newmark for providing the images of Macrostomum lignano and Schistosoma mansoni, respectively, used in Fig. 4.4. We thank Miquel Vila-Farré for providing the specimens of Phagocata ullala and Camerata robusta used for the immunostainings shown in Fig. 4.4. We thank Maria Almuedo-Castillo for providing planarian images in Fig. 4.3. We thank Iain Patten for advice on the English. This work was supported by grant BFU2012-31701 (Ministerio de Economía y Competitividad, Spain) to F.C, grant BFU2008-01544 (Ministerio de Economía y Competitividad, Spain) to ES, grant 2009SGR1018 (Agència de Gestió d’Ajuts Universitaris i de Recerca) to ES and FC, and grant AIB2010DE-00402 (Ministerio de Economia y Competitividad Accion Integrada) to ES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emili Saló .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Cebrià, F., Saló, E., Adell, T. (2015). Regeneration and Growth as Modes of Adult Development: The Platyhelminthes as a Case Study. In: Wanninger, A. (eds) Evolutionary Developmental Biology of Invertebrates 2. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1871-9_4

Download citation

Publish with us

Policies and ethics