Abstract
Chelicerata is a subphylum of arthropods that includes terrestrial as well as marine animals. Both the fossil record and molecular data place the origin of the chelicerates over 500 million years ago in the Cambrian (e.g., see Dunlop 2010; Rota-Stabelli et al. 2013). It has been shown that the chelicerates are a monophyletic group, and although they have previously been grouped together with the myriapods as Myriochelata, it is generally accepted that chelicerates represent the sister group of Mandibulata (pancrustaceans and myriapods; see Chaps. XX, YY, and ZZ) (Friedrich and Tautz 1995; Cook et al. 2001; Giribet et al. 2001; Hwang et al. 2001; Pisani et al. 2004; Dunn et al. 2008; Meusemann et al. 2010; Regier et al. 2010; Rota-Stabelli et al. 2011).
Keywords
- Horseshoe Crab
- Silk Gland
- Evolutionary Developmental Biology
- Book Lung
- Opisthosomal Segment
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Chapter vignette artwork by Brigitte Baldrian.© Brigitte Baldrian and Andreas Wanninger.
This is a preview of subscription content, access via your institution.
Buying options








References
Abzhanov A, Kaufman TC (1999) Embryonic expression patterns of the Hox genes of the crayfish Procambarus clarkii (Crustacea, Decapoda). Evol Dev 2:271–283
Aeschlimann A (1958) Développement embryonnaire d’Ornithodorus moubata (Murray) et transmission transovarienne de Borrelia duttoni. Acta Trop 15:15–64
Akiyama-Oda Y, Oda H (2003) Early patterning of the spider embryo: a cluster of mesenchymal cells at the cumulus produces Dpp signals received by germ disc epithelial cells. Development 130:1735–1747
Akiyama-Oda Y, Oda H (2006) Axis specification in the spider embryo: dpp is required for radial-to-axial symmetry transformation and sog for ventral patterning. Development 133:2347–2357. doi:10.1242/dev.02400
Akiyama-Oda Y, Oda H (2010) Cell migration that orients the dorsoventral axis is coordinated with anteroposterior patterning mediated by Hedgehog signaling in the early spider embryo. Development 137:1263–1273. doi:10.1242/dev.045625
Anderson DT (1973) Embryology and phylogeny in annelids and arthropods. Pergamon, Oxford
Arango CP (2002) Morphological and molecular phylogenetic analysis of the sea spiders (Arthropoda, Pycnogonida) and taxonomic study of tropical Australian forms. PhD Thesis, James Cook University
Arango CP, Wheeler WC (2007) Phylogeny of the sea spiders (Arthropoda, Pycnogonida) based on direct optimization of six loci and morphology. Cladistics 23:255–293. doi:10.1111/j.1096-0031.2007.00143.x
Averof M, Cohen SM (1997) Evolutionary origin of insect wings from ancestral gills. Nature 385:627–630
Ax P (2000) Multicellular animals, vol II, The phylogenetic system of the metazoa. Springer, Berlin
Ayoub NA, Garb JE, Tinghitella RM, Collin MA, Hayashi CY (2007) Blueprint for a high-performance biomaterial: full-length spider dragline silk genes. PLoS ONE 2:e514. doi:10.1371/journal.pone.0000514
Ayoub NA, Garb JE, Kuelbs A, Hayashi CY (2013) Ancient properties of spider silks revealed by the complete gene sequence of the prey-wrapping silk protein (AcSp1). Mol Biol Evol 30:589–601. doi:10.1093/molbev/mss254
Barnett AA, Thomas RH (2012) The delineation of the fourth walking leg segment is temporally linked to posterior segmentation in the mite Archegozetes longisetosus (Acari: Oribatida, Trhypochthoniidae). Evol Dev 14:383–392. doi:10.1111/j.1525-142X.2012.00556.x
Barnett AA, Thomas RH (2013a) Posterior Hox gene reduction in an arthropod: Ultrabithorax and Abdominal-B are expressed in a single segment in the mite Archegozetes longisetosus. Evodevo 4:23. doi:10.1186/2041-9139-4-23
Barnett AA, Thomas RH (2013b) The expression of limb gap genes in the mite Archegozetes longisetosus reveals differential patterning mechanisms in chelicerates. Evol Dev 15:280–292. doi:10.1111/ede.12038
Barreto FS, Avise JC (2011) The genetic mating system of a sea spider with male-biased sexual size dimorphism: evidence for paternity skew despite random mating success. Behav Ecol Sociobiol 65:1595–1604. doi:10.1007/s00265-011-1170-x
Beccaloni J (2009) Arachnids. Natural History Museum, London
Bergström J, Stürmer W, Winter G (1980) Palaeoisopus, Palaeopantopus and Palaeothea, pycnogonid arthropods from the Lower Devonian Hunsrück Slate, West Germany. Paläontol Z 54:7–54. doi:10.1007/BF02985882
Bitsch J, Bitsch C (2007) The segmental organization of the head region in Chelicerata: a critical review of recent studies and hypotheses. Acta Zool 88:317–335
Blackburn DC, Conley KW, Plachetzki DC, Kempler K, Battelle B-A, Brown NL (2008) Isolation and expression of Pax6 and atonal homologues in the American horseshoe crab, Limulus polyphemus. Dev Dyn 237:2209–2219. doi:10.1002/dvdy.21634
Börner J, Rehm P, Schill RO, Ebersberger I, Burmester T (2014) A transcriptome approach to ecdysozoan phylogeny. Mol Phylogenet Evol. doi:10.1016/j.ympev.2014.08.001
Botero-Trujillo R (2014) A new Colombian species of Cryptocellus (Arachnida, Ricinulei), with notes on the taxonomy of the genus. Zootaxa 3814:121–132. doi:10.11646/zootaxa.3814.1.7
Boxshall GA (2004) The evolution of arthropod limbs. Biol Rev Camb Philos Soc 79:253–300
Brauer A (1894) Beiträge zur Kenntnis der Entwicklungsgeschichte des Skorpions. II. Z Wiss Zool 59:351–433
Brenneis G, Scholtz G (2014) The “ventral organs” of Pycnogonida (Arthropoda) are neurogenic niches of late embryonic and post-embryonic nervous system development. PLoS ONE 9:e95435. doi:10.1371/journal.pone.0095435
Brenneis G, Ungerer P, Scholtz G (2008) The chelifores of sea spiders (Arthropoda, Pycnogonida) are the appendages of the deutocerebral segment. Evol Dev 10:717–724. doi:10.1111/j.1525-142X.2008.00285.x
Brenneis G, Arango CP, Scholtz G (2011a) Morphogenesis of Pseudopallene sp. (Pycnogonida, Callipallenidae) II: postembryonic development. Dev Genes Evol 221:329–350. doi:10.1007/s00427-011-0381-5
Brenneis G, Arango CP, Scholtz G (2011b) Morphogenesis of Pseudopallene sp. (Pycnogonida, Callipallenidae) I: embryonic development. Dev Genes Evol 221:309–328. doi:10.1007/s00427-011-0382-4
Brenneis G, Stollewerk A, Scholtz G (2013) Embryonic neurogenesis in Pseudopallene sp. (Arthropoda, Pycnogonida) includes two subsequent phases with similarities to different arthropod groups. Evodevo 4:32, 10.1186/2041-9139-4-32
Briggs DEG, Siveter DJ, Siveter DJ, Sutton MD, Garwood RJ, Legg D (2012) Silurian horseshoe crab illuminates the evolution of arthropod limbs. Proc Natl Acad Sci U S A 109:15702–15705. doi:10.1073/pnas.1205875109
Bristowe WS (1932) The liphistiid spiders. Proc Zool Soc Lond 102:1015–1057
Brownell PH, Farley RD (1974) The organization of the malleolar sensory system in the solpugid, Chanbria sp. Tissue Cell 6:471–485
Brunetta L, Craig CL (2010) Spider silk: evolution and 400 million years of spinning, waiting, snagging, and mating. Yale University Press, New Haven
Budd GE (2002) A palaeontological solution to the arthropod head problem. Nature 417:271–275. doi:10.1038/417271a
Butt AG, Taylor HH (1991) The function of spider coxal organs: effects of feeding and salt-loading on Porrhothele antipodiana (Mygalomorpha: Dipluridae). J Exp Biol 158:439–461
Cao Z, Yu Y, Wu Y, Hao P, Di Z, He Y, Chen Z, Yang W, Shen Z, He X, Sheng J, Xu X, Pan B, Feng J, Yang X, Hong W, Zhao W, Li Z, Huang K, Li T, Kong Y, Liu H, Jiang D, Zhang B, Hu J, Hu Y, Wang B, Dai J, Yuan B, Feng Y, Huang W, Xing X, Zhao G, Li X, Li Y, Li W (2013) The genome of Mesobuthus martensii reveals a unique adaptation model of arthropods. Nat Commun 4:2602. doi:10.1038/ncomms3602
Carroll SB, Grenier JK, Weatherbee SD (2005) From DNA to diversity, molecular genetics and the evolution of animal design, 2nd edn. Blackwell Publishing, Malden
Challis RJ, Goodacre SL, Hewitt GM (2006) Evolution of spider silks: conservation and diversification of the C-terminus. Insect Mol Biol 15:45–56. doi:10.1111/j.1365-2583.2005.00606.x
Chen S-H (1999) Cytological studies on six species of spiders from Taiwan (Araneae: Theridiidae, Psechridae, Uloboridae, Oxyopidae, and Ctenidae). Zool Stud 38:423–434
Chesebro JE, Pueyo JI, Couso JP (2013) Interplay between a Wnt-dependent organiser and the Notch segmentation clock regulates posterior development in Periplaneta americana. Biol Open 2:227–237. doi:10.1242/bio.20123699
Chipman AD (2010) Parallel evolution of segmentation by co-option of ancestral gene regulatory networks. Bioessays 32:60–70. doi:10.1002/bies.200900130
Clarke TH, Garb JE, Hayashi CY, Haney RA, Lancaster AK, Corbett S, Ayoub NA (2014) Multi-tissue transcriptomics of the black widow spider reveals expansions, co-options, and functional processes of the silk gland gene toolkit. BMC Genomics 15:365. doi:10.1186/1471-2164-15-365
Cobb M (2010) Pycnogonids. Curr Biol 20:R591–R593. doi:10.1016/j.cub.2010.05.034
Condé B (1996) Les Palpigrades, 1885–1995: acquisitions et lacunes. Rev Suisse Zool 1:87–106, hors série
Cook CE, Smith ML, Telford MJ, Bastianello A, Akam M (2001) Hox genes and the phylogeny of the arthropods. Curr Biol 11:759–763
Couso JP (2009) Segmentation, metamerism and the Cambrian explosion. Int J Dev Biol 53:1305–1316. doi:10.1387/ijdb.072425jc
Craig CL (1997) Evolution of arthropod silks. Annu Rev Entomol 42:231–267. doi:10.1146/annurev.ento.42.1.231
Croucher PJ, Brewer MS, Winchell CJ, Oxford GS, Gillespie RG (2013) De novo characterization of the gene-rich transcriptomes of two color-polymorphic spiders, Theridion grallator and T. californicum (Araneae: Theridiidae), with special reference to pigment genes. BMC Genomics 14:862. doi:10.1186/1471-2164-14-862
Damen WGM (2002) Parasegmental organization of the spider embryo implies that the parasegment is an evolutionary conserved entity in arthropod embryogenesis. Development 129:1239–1250
Damen WGM (2007) Evolutionary conservation and divergence of the segmentation process in arthropods. Dev Dyn 236:1379–1391. doi:10.1002/dvdy.21157
Damen WGM (2010) Hox genes and the body plans of chelicerates and pycnogonids. Adv Exp Med Biol 689:125–132
Damen WGM, Tautz D (1999) Abdominal-B expression in a spider suggests a general role for Abdominal-B in specifying the genital structure. J Exp Zool 285:85–91
Damen WGM, Hausdorf M, Seyfarth EA, Tautz D (1998) A conserved mode of head segmentation in arthropods revealed by the expression pattern of Hox genes in a spider. Proc Natl Acad Sci U S A 95:10665–10670
Damen WG, Weller M, Tautz D (2000) Expression patterns of hairy, even-skipped, and runt in the spider Cupiennius salei imply that these genes were segmentation genes in a basal arthropod. Proc Natl Acad Sci U S A 97:4515–4519
Damen WGM, Saridaki T, Averof M (2002) Diverse adaptations of an ancestral gill: a common evolutionary origin for wings, breathing organs, and spinnerets. Curr Biol 12:1711–1716
Damen WGM, Janssen R, Prpic N-M (2005) Pair rule gene orthologs in spider segmentation. Evol Dev 7:618–628. doi:10.1111/j.1525-142X.2005.05065.x
Davis GK, D’Alessio JA, Patel NH (2005) Pax3/7 genes reveal conservation and divergence in the arthropod segmentation hierarchy. Dev Biol 285(1):169–184
de la Fuente J, Kocan KM, Almazán C, Blouin EF (2007) RNA interference for the study and genetic manipulation of ticks. Trends Parasitol 23:427–433
Dearden P, Grbic M, Falciani F, Akam M (2000) Maternal expression and early zygotic regulation of the Hox3/zen gene in the grasshopper Schistocerca gregaria. Evol Dev 2:261–270
Dearden PK, Donly C, Grbic M (2002) Expression of pair-rule gene homologues in a chelicerate: early patterning of the two-spotted spider mite Tetranychus urticae. Development 129:5461–5472
Dearden P, Grbic M, Donly C (2003) Vasa expression and germ-cell specification in the spider mite Tetranychus urticae. Dev Genes Evol 212:599–603. doi:10.1007/s00427-002-0280-x
Doeffinger C, Hartenstein V, Stollewerk A (2010) Compartmentalization of the precheliceral neuroectoderm in the spider Cupiennius salei: development of the arcuate body, optic ganglia, and mushroom body. J Comp Neurol 518:2612–2632. doi:10.1002/cne.22355
Dunlop JA (1997) The origins of tetrapulmonate book lungs and their significance for chelicerate phylogeny. In: Selden PA (ed) Presented at the proceedings of the 17th European Colloquium of Arachnology, Edinburgh, pp 9–16
Dunlop JA (2010) Geological history and phylogeny of Chelicerata. Arthropod Struct Dev 39:124–142. doi:10.1016/j.asd.2010.01.003
Dunlop JA, Arango CP (2005) Pycnogonid affinities: a review. J Zool Syst 43:8–21
Dunlop JA, Braddy SJ (2001) Scorpions and their sister-group relationships. In: Fet V, Selden PA (eds) Scorpions 2001: in Memoriam Gary a. Polis. British Arachnological Society, London, pp 1–24
Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD, Sørensen MV, Haddock SHD, Schmidt-Rhaesa A, Okusu A, Kristensen RM, Wheeler WC, Martindale MQ, Giribet G (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–749. doi:10.1038/nature06614
Edgecombe GD (2010) Arthropod phylogeny: an overview from the perspectives of morphology, molecular data and the fossil record. Arthropod Struct Dev 39:74–87. doi:10.1016/j.asd.2009.10.002
Eisner T, Meinwald J, Monro A, Ghent R (1961) Defence mechanisms of arthropods—I the composition and function of the spray of the whipscorpion, Mastigoproctus giganteus (Lucas) (Arachnida, Pedipalpida). J Insect Physiol 6:272–298. doi:10.1016/0022-1910(61)90054-3
Fagotto F, Hess E, Aeschlimann A (1988) The early embryonic development of the argasid tick Ornithodorus moubata (Acarina: Ixodoidea: Argasidae). Entomologia Generalis 13:1–8. doi:10.1127/entom.gen/13/1988/1
Farley RD (2001) Development of segments and appendages in embryos of the desert scorpion Paruroctonus mesaensis (Scorpiones: Vaejovidae). J Morphol 250:70–88. doi:10.1002/jmor.1060
Farley RD (2008) Development of respiratory structures in embryos and first and second instars of the bark scorpion, Centruroides gracilis (Scorpiones: Buthidae). J Morphol 269:1134–1156. doi:10.1002/jmor.10653
Farley RD (2010) Book gill development in embryos and first and second instars of the horseshoe crab Limulus polyphemus L. (Chelicerata, Xiphosura). Arthropod Struct Dev 39:369–381. doi:10.1016/j.asd.2010.04.001
Farley RD (2011) The ultrastructure of book lung development in the bark scorpion Centruroides gracilis (Scorpiones: Buthidae). Front Zool 8:18. doi:10.1186/1742-9994-8-18
Faussek V (1889) Über die embryonale Entwicklung der Geschlechtsorgane bei der Afterspinne (Phalangium). Biol Zentralbl 8:359–363
Faussek V (1891) Zur Anatomie und Embryologie der Phalangiden. Trav Soc Nat St. Petersbourg Zool Physiol. p 22
Foelix RF (2010) Biology of spiders, 3rd edn. Oxford University Press, New York
Friedrich M, Tautz D (1995) Ribosomal DNA phylogeny of the major extant arthropod classes and the evolution of myriapods. Nature 376:165–167. doi:10.1038/376165a0
Garb JE, Ayoub NA, Hayashi CY (2010) Untangling spider silk evolution with spidroin terminal domains. BMC Evol Biol 10:243. doi:10.1186/1471-2148-10-243
Garwood RJ, Sharma PP, Dunlop JA, Giribet G (2014) A Paleozoic stem group to mite harvestmen revealed through integration of phylogenetics and development. Curr Biol 24:1017–1023. doi:10.1016/j.cub.2014.03.039
Gatesy J, Hayashi C, Motriuk D, Woods J, Lewis R (2001) Extreme diversity, conservation, and convergence of spider silk fibroin sequences. Science 291:2603–2605. doi:10.1126/science.1057561
Giribet G, Edgecombe GD, Wheeler WC (2001) Arthropod phylogeny based on eight molecular loci and morphology. Nature 413:157–161. doi:10.1038/35093097
Giribet G, Edgecombe GD, Wheeler WC, Babbitt C (2002) Phylogeny and systematic position of Opiliones: a combined analysis of chelicerate relationships using morphological and molecular data. Cladistics 18:5–70
Gnaspini P, Lerche CF (2010) Embryonic development of Ampheres leucopheus and Iporangaia pustulosa (Arachnida: Opiliones: Gonyleptidae). J Exp Zool B Mol Dev Evol 314:489–502. doi:10.1002/jez.b.21355
Grbic M, Khila A, Lee K-Z, Bjelica A, Grbic V, Whistlecraft J, Verdon L, Navajas M, Nagy L (2007) Mity model: Tetranychus urticae, a candidate for chelicerate model organism. Bioessays 29:489–496. doi:10.1002/bies.20564
Grbic M, Van Leeuwen T, Clark RM, Rombauts S, Rouzé P, Grbic V, Osborne EJ, Dermauw W, Ngoc PCT, Ortego F, Hernández-Crespo P, Diaz I, Martinez M, Navajas M, Sucena É, Magalhães S, Nagy L, Pace RM, Djuranović S, Smagghe G, Iga M, Christiaens O, Veenstra JA, Ewer J, Villalobos RM, Hutter JL, Hudson SD, Velez M, Yi SV, Zeng J, Pires-daSilva A, Roch F, Cazaux M, Navarro M, Zhurov V, Acevedo G, Bjelica A, Fawcett JA, Bonnet E, Martens C, Baele G, Wissler L, Sanchez-Rodriguez A, Tirry L, Blais C, Demeestere K, Henz SR, Gregory TR, Mathieu J, Verdon L, Farinelli L, Schmutz J, Lindquist E, Feyereisen R, Van de Peer Y (2011) The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature 479:487–492. doi:10.1038/nature10640
Gregory TR, Shorthouse DP (2003) Genome sizes of spiders. J Hered 94:285–290
Gromov AV (1998) New family, genus and species of scorpions (Arachnida, Scorpiones) from southern central Asia. Zool Zh 77:1003–1008
Harvey MS (1992) The phylogeny and classification of the Pseudoscorpionida (Chelicerata: Arachnida). Invertebr Syst 6:1373–1435. doi:10.1071/IT9921373
Harvey MS (2002) The neglected cousins: what do we know about the smaller arachnid orders? J Arachnol 30:357–372
Harvey MS (2003) Catalogue of the smaller arachnid orders of the world: Amblypygi, Uropygi, Schizomida, Palpigradi, Ricinulei and Solifugae. CSIRO Publishing, Collingwood
Harvey MS (2011) Pseudoscorpions of the world [WWW Document]. Western Australian Museum, Perth. URL http://www.museum.wa.gov.au/catalogues/pseudoscorpions. Accessed 18 Aug 2014
Haupt J, Müller F (2004) New products of defense secretion in south east Asian whip scorpions (Arachnida: Uropygi: Thelyphonida). Z Naturforsch C 59:579–581, Journal of Biosciences
Hayashi CY, Lewis RV (1998) Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silks. J Mol Biol 275:773–784. doi:10.1006/jmbi.1997.1478
Hayashi CY, Lewis RV (2000) Molecular architecture and evolution of a modular spider silk protein gene. Science 287:1477–1479
Hayashi CY, Shipley NH, Lewis RV (1999) Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins. Int J Biol Macromol 24:271–275
Herold M (1824) Von der Erzeugung der Spinnen im Eie. Joh. Christ. Kriegern und Comp. academischen Buchhändlern, Marbrug
Heymons R (1904) Sur les premières phases du développement de Galeodes caspius. In: Bedot M (ed) Presented at the Sixième Congrès International de Zoologie, Geneva, pp 713–719
Hilbrant M, Damen WGM, McGregor AP (2012) Evolutionary crossroads in developmental biology: the spider Parasteatoda tepidariorum. Development 139:2655–2662. doi:10.1242/dev.078204
Hjelle JT (1990) Anatomy and morphology. In: Polis GA (ed) The biology of scorpions. Stanford University Press, Stanford, pp 5–30
Höfer AM, Perry SF, Schmitz A (2000) Respiratory system of arachnids II: morphology of the tracheal system of Leiobunum rotundum and Nemastoma lugubre (Arachnida, Opiliones). Arthropod Struct Dev 29:13–21
Holm A (1947) On the development of Opilio parietinus Deg. Zool Bidr Upps 29:409–422
Holm A (1952) Experimentelle Untersuchungen über die Entwicklung und Entwicklungsphysiologie des Spinnenembryos. Zool Bidrag 29:293–422
Hwang UW, Friedrich M, Tautz D, Park CJ, Kim W (2001) Mitochondrial protein phylogeny joins myriapods with chelicerates. Nature 413:154–157. doi:10.1038/35093090
Itow T (1990) An experimental study on the formation of body axes in embryos of the horseshoe crab, Tachypleus tridentatus. Bulletin of the Education Faculty, Shizuoka University. Nat Sci Ser 40:1–11
Itow T (2005) Invitation to experimental evolution: changes of morphogenesis of horseshoe crabs. Bulletin of the Education Faculty, Shizuoka University. Nat Sci Ser 55:13–28
Itow T, Sekiguchi K (1979) Induction of multiple embryos with NaHCO3 or calcium free sea water in the horseshoe crab. Wilhelm Roux’s Arch Dev Biol 187:245–254. doi:10.1007/BF00848620
Itow T, Sekiguchi K (1980) Morphogenic movement and experimentally induced decrease in number of embryonic segments in the Japanese horseshoe crab, Tachypleus tridentatus. Biol Bull 158:324–338
Itow T, Kenmochi S, Mochizuki T (1991) Induction of secondary embryos by intra- and interspecific grafts of center cells under the blastopore in horseshoe crabs. Dev Growth Differ 33:251–258
Iwanoff PP (1933) Die embryonale Entwicklung von Limulus molluccanus. Zool Jahrb Abt Anat Ontog Tiere 56:163–348
Jager M, Murienne J, Clabaut C, Deutsch J, Le Guyader H, Manuel M (2006) Homology of arthropod anterior appendages revealed by Hox gene expression in a sea spider. Nature 441:506–508. doi:10.1038/nature04591
Janssen R, Damen WGM (2006) The ten Hox genes of the millipede Glomeris marginata. Dev Genes Evol 216:451–465. doi:10.1007/s00427-006-0092-5
Janssen R, Le Gouar M, Pechmann M, Poulin F, Bolognesi R, Schwager EE, Hopfen C, Colbourne JK, Budd GE, Brown SJ, Prpic N-M, Kosiol C, Vervoort M, Damen WGM, Balavoine G, McGregor AP (2010) Conservation, loss, and redeployment of Wnt ligands in protostomes: implications for understanding the evolution of segment formation. BMC Evol Biol 10:374. doi:10.1186/1471-2148-10-374
Janssen R, Damen WG, Budd GE (2011) Expression of collier in the premandibular segment of myriapods: support for the traditional Atelocerata concept or a case of convergence? BMC Evol Biol 11:50. doi:10.1186/1471-2148-11-50
Janssen R, Eriksson BJ, Tait NN, Budd GE (2014) Onychophoran Hox genes and the evolution of arthropod Hox gene expression. Front Zool 11:22. doi:10.1186/1742-9994-11-22
Jarvis E, Bruce HS, Patel NH (2012) Evolving specialization of the arthropod nervous system. Proc Natl Acad Sci U S A 109(Suppl 1):10634–10639. doi:10.1073/pnas.1201876109
Jędrzejowska I, Mazurkiewicz-Kania M, Garbiec A, Kubrakiewicz J (2013) Differentiation and function of the ovarian somatic cells in the pseudoscorpion, Chelifer cancroides (Linnaeus, 1761) (Chelicerata: Arachnida: Pseudoscorpionida). Arthropod Struct Dev 42:27–36. doi:10.1016/j.asd.2012.09.004
Jeram AJ (1997) Phylogeny, classification and evolution of Silurian and Devonian scorpions. In: Proceedings of the 17th European Colloquium of Arachnology 1998, Edinburgh. pp 17–31
Juberthie C (1964) Recherches sur la biologie des opilions. Ann Spéliol 19:1–238
Kainz F, Ewen-Campen B, Akam M, Extavour CG (2011) Notch/Delta signalling is not required for segment generation in the basally branching insect Gryllus bimaculatus. Development 138:5015–5026. doi:10.1242/dev.073395
Kamenz C, Dunlop JA, Scholtz G (2005) Characters in the book lungs of Scorpiones (Chelicerata, Arachnida) revealed by scanning electron microscopy. Zoomorphology 124:101–109. doi:10.1007/s00435-005-0115-1
Kanayama M, Akiyama-Oda Y, Oda H (2010) Early embryonic development in the spider Achaearanea tepidariorum: microinjection verifies that cellularization is complete before the blastoderm stage. Arthropod Struct Dev 39:436–445. doi:10.1016/j.asd.2010.05.009
Kanayama M, Akiyama-Oda Y, Nishimura O, Tarui H, Agata K, Oda H (2011) Travelling and splitting of a wave of hedgehog expression involved in spider-head segmentation. Nat Commun 2:500. doi:10.1038/ncomms1510
Karaman IM (2005) Evidence of spermatophores in Cyphophthalmi (Arachnida, Opiliones). Rev Suisse Zool 112:3–11
Kästner A (1929) Bau und Funktion der Fächertracheen einiger Spinnen. Z Morphol Okol Tiere 13:463–557
Kautzsch G (1909) Über die Entwicklung von Agelena labyrinthica Clerck. I Teil. Zool Jahrb Abt Anat Ontog Tiere 30:535–602
Khadjeh SS, Turetzek NN, Pechmann MM, Schwager EEE, Wimmer EAE, Damen WGMW, Prpic N-MN (2012) Divergent role of the Hox gene Antennapedia in spiders is responsible for the convergent evolution of abdominal limb repression. Proc Natl Acad Sci U S A 109:4921–4926. doi:10.1073/pnas.1116421109
Khila A, Grbic M (2007) Gene silencing in the spider mite Tetranychus urticae: dsRNA and siRNA parental silencing of the Distal-less gene. Dev Genes Evol 217:241–251. doi:10.1007/s00427-007-0132-9
Kimble M, Coursey Y, Ahmad N, Hinsch GW (2002) Behavior of the yolk nuclei during embryogenesis, and development of the midgut diverticulum in the horseshoe crab Limulus polyphemus. Invertebr Biol 121:365–377. doi:10.1111/j.1744-7410.2002.tb00137.x
Kingsley JS (1892) The embryology of Limulus. J Morphol 7:36–66
Kishinouye K (1893) On the development of Limulus longispina. J Coll Sci Imp Univ Jpn 5:53–100
Kondo A (1969) The fine structures of the early spider embryo. Sci Rep Tokyo Kyoiku Daigaku Sec B 207:47–67
Lankester ER (1881) Limulus an arachnid. Q J Microsc Sci 21(504–548):609–649
Laumann M, Bergmann P, Norton RA, Heethoff M (2010a) First cleavages, preblastula and blastula in the parthenogenetic mite Archegozetes longisetosus (Acari, Oribatida) indicate holoblastic rather than superficial cleavage. Arthropod Struct Dev 39:276–286. doi:10.1016/j.asd.2010.02.003
Laumann M, Norton RA, Heethoff M (2010b) Acarine embryology: inconsistencies, artificial results and misinterpretations. Soil Org 82:217–235
Laurie M (1890) The embryology of a scorpion (Euscorpius italicus). J Cell Sci 2:105–142
Legg G (1977) Sperm transfer and mating in Ricinoides hanseni (Ricinulei: Arachnida). J Zool 182:51–61. doi:10.1111/j.1469-7998.1977.tb04140.x
Levi HW (1967) Adaptations of respiratory systems of spiders. Evolution 21:571–583
Lighton JRB, Fielden LJ (1996) Gas exchange in wind spiders (Arachnida, Solphugidae): independent evolution of convergent control strategies in solphugids and insects. J Insect Physiol 42:347–357. doi:10.1016/0022-1910(95)00112-3
Lighton JR, Joos B (2002) Discontinuous gas exchange in a tracheate arthropod, the pseudoscorpion Garypus californicus: occurrence, characteristics and temperature dependence. J Insect Sci 2:23 (Online)
Linne V, Stollewerk A (2011) Conserved and novel functions for Netrin in the formation of the axonal scaffold and glial sheath cells in spiders. Dev Biol 353:134–146. doi:10.1016/j.ydbio.2011.02.006
Linne V, Eriksson BJ, Stollewerk A (2012) Single-minded and the evolution of the ventral midline in arthropods. Dev Biol 364:66–76. doi:10.1016/j.ydbio.2012.01.019
Little C (2009) The colonisation of land: origins and adaptations of terrestrial animals. Cambridge University Press, Cambridge
Lourenço WR (2000) Reproduction in scorpions, with special reference to parthenogenesis. In: Toft S, Scharff N (eds) European arachnology 2000. Aarhus University Press, Aarhus, pp 71–85
Machado G, Pinto-da-Rocha R, Giribet G (2007) What are harvestmen? In: Pinto-da-Rocha R, Machado G, Giribet G (eds) Harvestmen: the biology of Opiliones. Harvard University Press, Cambridge, MA, pp 1–13
Machner J, Scholtz G (2010) A scanning electron microscopy study of the embryonic development of Pycnogonum litorale (Arthropoda, Pycnogonida). J Morphol 271:1306–1318. doi:10.1002/jmor.10871
Manuel M, Jager M, Murienne J, Clabaut C, Le Guyader H (2006) Hox genes in sea spiders (Pycnogonida) and the homology of arthropod head segments. Dev Genes Evol 216:481–491. doi:10.1007/s00427-006-0095-2
Marples BJ (1967) The spinnerets and epiandrous glands of spiders. Zool J Linn Soc 46:209–222
Maxmen A, Browne WE, Martindale MQ, Giribet G (2005) Neuroanatomy of sea spiders implies an appendicular origin of the protocerebral segment. Nature 437:1144–1148. doi:10.1038/nature03984
McGregor AP, Hilbrant M, Pechmann M, Schwager EE, Prpic N-M, Damen WGM (2008a) Cupiennius salei and Achaearanea tepidariorum: spider models for investigating evolution and development. Bioessays 30:487–498. doi:10.1002/bies.20744
McGregor AP, Pechmann M, Schwager EE, Feitosa NM, Kruck S, Aranda M, Damen WGM (2008b) Wnt8 is required for growth-zone establishment and development of opisthosomal segments in a spider. Curr Biol 18:1619–1623. doi:10.1016/j.cub.2008.08.045
McGregor AP, Pechmann M, Schwager EE, Damen WG (2009) An ancestral regulatory network for posterior development in arthropods. Commun Integr Biol 2:174–176
Meusemann K, von Reumont BM, Simon S, Roeding F, Strauss S, Kück P, Ebersberger I, Walzl M, Pass G, Breuers S, Achter V, von Haeseler A, Burmester T, Hadrys H, Wägele JW, Misof B (2010) A phylogenomic approach to resolve the arthropod tree of life. Mol Biol Evol 27:2451–2464. doi:10.1093/molbev/msq130
Mittmann B (2002) Early neurogenesis in the horseshoe crab Limulus polyphemus and its implication for arthropod relationships. Biol Bull 203:221–222
Mittmann B, Wolff C (2012) Embryonic development and staging of the cobweb spider Parasteatoda tepidariorum C. L. Koch, 1841 (syn.: Achaearanea tepidariorum; Araneomorphae; Theridiidae). Dev Genes Evol 222:189–216. doi:10.1007/s00427-012-0401-0
Montgomery T (1909) The development of theridium, an aranead, up to the stage of reversion. J Morphol 20:297–352. doi:10.1002/jmor.1050200205
Moritz M (1957) Zur Embryonalentwicklung der Phalangiiden (Opiliones, Palpatores) unter besonderer Berücksichtigung der äusseren Morphologie, der Bildung des Mitteldarmes und der Genitalanlage. Zool Jb Anat Ont 76:331–370
Mullen GR (1969) Morphology and histology of the silk glands in Araneus sericatus Cl. Trans Am Microsc Soc 88:232–240
Muñoz-Cuevas A (1971) Étude du développment embryonnaire de Pachylus quinamavidensis. Bull Mus Natl Hist Nat 2:1238–1250
Murienne J, Harvey MS, Giribet G (2008) First molecular phylogeny of the major clades of Pseudoscorpiones (Arthropoda: Chelicerata). Mol Phylogenet Evol 49:170–184. doi:10.1016/j.ympev.2008.06.002
Nambu JR, Franks RG, Hu S, Crews ST (1990) The single-minded gene of Drosophila is required for the expression of genes important for the development of CNS midline cells. Cell 63:63–75
Nambu JR, Lewis JO, Wharton KA, Crews ST (1991) The Drosophila single-minded gene encodes a helix-loop-helix protein that acts as a master regulator of CNS midline development. Cell 67:1157–1167
Nentwig W (2013) Spider ecophysiology. Springer, Heidelberg
Ng M, Diaz-Benjumea FJ, Cohen SM (1995) Nubbin encodes a POU-domain protein required for proximal-distal patterning in the Drosophila wing. Development 121:589–599
Nossa CW, Havlak P, Yue J-X, Lv J, Vincent KY, Brockmann HJ, Putnam NH (2014) Joint assembly and genetic mapping of the Atlantic horseshoe crab genome reveals ancient whole genome duplication. GigaScience 3:9. doi:10.1186/2047-217X-3-9
Obst M, Faurby S, Bussarawit S, Funch P (2012) Molecular phylogeny of extant horseshoe crabs (Xiphosura, Limulidae) indicates Paleogene diversification of Asian species. Mol Phylogenet Evol 62:21–26. doi:10.1016/j.ympev.2011.08.025
Oda H, Akiyama-Oda Y (2008) Differing strategies for forming the arthropod body plan: lessons from Dpp, Sog and Delta in the fly Drosophila and spider Achaearanea. Dev Growth Differ 50:203–214. doi:10.1111/j.1440-169X.2008.00998.x
Oda H, Nishimura O, Hirao Y, Tarui H, Agata K, Akiyama-Oda Y (2007) Progressive activation of Delta-Notch signaling from around the blastopore is required to set up a functional caudal lobe in the spider Achaearanea tepidariorum. Development 134:2195–2205. doi:10.1242/dev.004598
Palmer JM (1991) Comparative morphology of the external silk production apparatus of “primitive” spiders. PhD Thesis, Harvard University, Cambridge, MA
Palmer JM, Coyle FA, Harrison FW (1982) Structure and cytochemistry of the silk glands of the mygalomorph spider Antrodiaetus unicolor (Araneae, Antrodiaetidae). J Morphol 174:269–274
Pechmann M, Prpic N-M (2009) Appendage patterning in the south American bird spider Acanthoscurria geniculata (Araneae: Mygalomorphae). Dev Genes Evol 219:189–198. doi:10.1007/s00427-009-0279-7
Pechmann M, McGregor AP, Schwager EE, Feitosa NM, Damen WGM (2009) Dynamic gene expression is required for anterior regionalization in a spider. Proc Natl Acad Sci U S A 106:1468–1472. doi:10.1073/pnas.0811150106
Pechmann M, Khadjeh S, Turetzek N, McGregor AP, Damen WGM, Prpic N-M (2011) Novel function of Distal-less as a gap gene during spider segmentation. PLoS Genet 7:e1002342. doi:10.1371/journal.pgen.1002342
Pepato AR, da Rocha CEF, Dunlop JA (2010) Phylogenetic position of the acariform mites: sensitivity to homology assessment under total evidence. BMC Evol Biol 10:235. doi:10.1186/1471-2148-10-235
Peters HM (1955) Über den Spinnapparat von Nephila madagascariensis. Z Naturforsch 10b:395–404
Petrunkevitch A (1955) Arachnida. In: Moore AC (ed) Treatise on invertebrate paleontology, part 2. University of Kansas Press, Lawrence, pp 42–162
Pisani D, Poling LL, Lyons-Weiler M, Hedges SB (2004) The colonization of land by animals: molecular phylogeny and divergence times among arthropods. BMC Biol 2:1. doi:10.1186/1741-7007-2-1
Popadic A, Nagy L (2001) Conservation and variation in Ubx expression among chelicerates. Evol Dev 3:391–396
Posnien N, Zeng V, Schwager EE, Pechmann M, Hilbrant M, Keefe JD, Damen WGM, Prpic N-M, McGregor AP, Extavour CG (2014) A comprehensive reference transcriptome resource for the common house spider Parasteatoda tepidariorum. PLoS ONE 9:e104885. doi:10.1371/journal.pone.0104885
Prpic N, Damen W (2004) Expression patterns of leg genes in the mouthparts of the spider Cupiennius salei (Chelicerata: Arachnida). Dev Genes Evol 214:296–302. doi:10.1007/s00427-004-0393-5
Prpic N-M, Wigand B, Damen WGM, Klingler M (2001) Expression of dachshund in wild-type and Distal-less mutant Tribolium corroborates serial homologies in insect appendages. Dev Genes Evol 211:467–477. doi:10.1007/s004270100178
Prpic N-M, Janssen R, Wigand B, Klingler M, Damen WGM (2003) Gene expression in spider appendages reveals reversal of exd/hth spatial specificity, altered leg gap gene dynamics, and suggests divergent distal morphogen signaling. Dev Biol 264:119–140
Pueyo JI, Lanfear R, Couso JP (2008) Ancestral Notch-mediated segmentation revealed in the cockroach Periplaneta americana. Proc Natl Acad Sci U S A 105:16614–16619. doi:10.1073/pnas.0804093105
Punzo F (1998) The biology of camel-spiders (Arachnida, Solifugae). Kluwer Academic Publishers, Boston
Purcell WF (1909) Development and origin of the respiratory organs in Araneæ. Q J Microsc Sci s2-54:1–110
Raspotnig G, Schwab J, Karaman I (2012) High conservatism in the composition of scent gland secretions in cyphophthalmid harvestmen: evidence from Pettalidae. J Chem Ecol 38:437–440. doi:10.1007/s10886-012-0108-8
Regier JC, Shultz JW, Zwick A, Hussey A, Ball B, Wetzer R, Martin JW, Cunningham CW (2010) Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463:1079–1083. doi:10.1038/nature08742
Reisinger PWM, Tutter I, Welsch U (1991) Fine structure of the gills of the horseshoe crabs Limulus polyphemus and Tachypleus tridentatus and of the book lungs of the spider Eurypelma californicum. Zool Jahrb Abt Anat Ontog Tiere 121:331–357
Roeding F, Börner J, Kube M, Klages S, Reinhardt R, Burmester T (2009) A 454 sequencing approach for large scale phylogenomic analysis of the common emperor scorpion (Pandinus imperator). Mol Phylogenet Evol 53:826–834. doi:10.1016/j.ympev.2009.08.014
Rota-Stabelli O, Campbell L, Brinkmann H, Edgecombe GD, Longhorn SJ, Peterson KJ, Pisani D, Philippe H, Telford MJ (2011) A congruent solution to arthropod phylogeny: phylogenomics, microRNAs and morphology support monophyletic Mandibulata. Proc Biol Sci 278:298–306. doi:10.1098/rspb.2010.0590
Rota-Stabelli O, Daley AC, Pisani D (2013) Molecular timetrees reveal a Cambrian colonization of land and a new scenario for ecdysozoan evolution. Curr Biol 23:392–398. doi:10.1016/j.cub.2013.01.026
Ruppert EE, Fox RS, Barnes RD (2004) Invertebrate zoology. Brooks/Cole - Thompson Learning, Belmont
Sanggaard KW, Bechsgaard JS, Fang X, Duan J, Dyrlund TF, Gupta V, Jiang X, Cheng L, Fan D, Feng Y, Han L, Huang Z, Wu Z, Liao L, Settepani V, Thogersen IB, Vanthournout B, Wang T, Zhu Y, Funch P, Enghild JJ, Schauser L, Andersen SU, Villesen P, Schierup MH, Bilde T, Wang J (2014) Spider genomes provide insight into composition and evolution of venom and silk. Nat Commun 5:3765. doi:10.1038/ncomms4765
Santos AJ, Ferreira RL, Buzatto BA (2013a) Two new cave-dwelling species of the short-tailed Whipscorpion genus Rowlandius (Arachnida: Schizomida: Hubbardiidae) from northeastern Brazil, with comments on male dimorphism. PLoS ONE 8:e63616. doi:10.1371/journal.pone.0063616
Santos VT, Ribeiro L, Fraga A, de Barros CM, Campos E, Moraes J, Fontenele MR, Araújo HM, Feitosa NM, Logullo C, da Fonseca RN (2013b) The embryogenesis of the tick Rhipicephalus (Boophilus) microplus: the establishment of a new chelicerate model system. Genesis 51:803–818. doi:10.1002/dvg.22717
Schimkewitsch W (1887) Etude sur le développement des araignées. Arch Biol 6:515–584
Schimkewitsch W (1898) Entwicklung des Darmcanals bei Arachniden. Trav Soc Nat St Petersbourg 29:16–18
Schimkewitsch VM (1906) Über die Entwicklung von Thelyphonus caudatus L. verglichen mit derjenigen einiger andrer Arachniden. Z Wiss Zool 81:1–95
Scholtz G, Edgecombe GD (2006) The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Dev Genes Evol 216:395–415. doi:10.1007/s00427-006-0085-4
Scholtz G, Kamenz C (2006) The book lungs of Scorpiones and Tetrapulmonata (Chelicerata, Arachnida): evidence for homology and a single terrestrialisation event of a common arachnid ancestor. Zoology (Jena) 109:2–13. doi:10.1016/j.zool.2005.06.003
Schoppmeier M, Damen WGM (2001) Double-stranded RNA interference in the spider Cupiennius salei: the role of Distal-less is evolutionarily conserved in arthropod appendage formation. Dev Genes Evol 211:76–82
Schoppmeier M, Damen WGM (2005) Expression of Pax group III genes suggests a single-segmental periodicity for opisthosomal segment patterning in the spider Cupiennius salei. Evol Dev 7:160–169. doi:10.1111/j.1525-142X.2005.05018.x
Schwager EE, Schoppmeier M, Pechmann M, Damen WGM (2007) Duplicated Hox genes in the spider Cupiennius salei. Front Zool 4:10. doi:10.1186/1742-9994-4-10
Schwager EE, Pechmann M, Feitosa NM, McGregor AP, Damen WGM (2009) Hunchback functions as a segmentation gene in the spider Achaearanea tepidariorum. Curr Biol 19:1333–1340. doi:10.1016/j.cub.2009.06.061
Schwager EE, Meng Y, Extavour CG (2015) Vasa and piwi are required for mitotic integrity in early embryo- genesis in the spider Parasteatoda tepidariorum. Dev Biol 402:276–290
Sekiguchi K, Yamamichi Y, Costlow JD (1982) Horseshoe crab developmental studies I. Normal embryonic development of Limulus polyphemus compared with Tachypleus tridentatus. Prog Clin Biol Res 81:53–73
Selden PA, Shear WA, Bonamo PM (1991) A spider and other arachnids from the Devonian of New York, and reinterpretations of Devonian Araneae. Palaeontology 34:241–281
Sharma PP, Schwager EE, Extavour CG, Giribet G (2012a) Evolution of the chelicera: a dachshund domain is retained in the deutocerebral appendage of Opiliones (Arthropoda, Chelicerata). Evol Dev 14:522–533. doi:10.1111/ede.12005
Sharma PP, Schwager EE, Extavour CG, Giribet G (2012b) Hox gene expression in the harvestman Phalangium opilio reveals divergent patterning of the chelicerate opisthosoma. Evol Dev 14:450–463. doi:10.1111/j.1525-142X.2012.00565.x
Sharma PP, Schwager EE, Giribet G, Jockusch EL, Extavour CG (2013) Distal-less and dachshund pattern both plesiomorphic and apomorphic structures in chelicerates: RNA interference in the harvestman Phalangium opilio (Opiliones). Evol Dev 15:228–242. doi:10.1111/ede.12029
Sharma PP, Kaluziak ST, Pérez-Porro AR, González VL, Hormiga G, Wheeler WC, Giribet G (2014a) Phylogenomic interrogation of Arachnida reveals systemic conflicts in phylogenetic signal. Mol Biol Evol. doi:10.1093/molbev/msu235
Sharma PP, Schwager EE, Extavour CG, Wheeler WC (2014b) Hox gene duplications correlate with posterior heteronomy in scorpions. Proc Biol Sci 281. doi:10.1098/rspb.2014.0661
Sharma PP, Gupta T, Schwager EE, Wheeler WC, Extavour CG (2014c) Subdivision of arthropod cap-n-collar expression domains is restricted to Mandibulata. Evodevo 5:3. doi:10.1186/2041-9139-5-3
Shultz JW (1987) The origin of the spinning apparatus in spiders. Biol Rev Camb Philos Soc 62:89–113. doi:10.1111/j.1469-185X.1987.tb01263.x
Shultz JW (1990) Evolutionary morphology and phylogeny of Arachnida. Cladistics 6:1–38. doi:10.1111/j.1096-0031.1990.tb00523.x
Shultz JW (2007) A phylogenetic analysis of the arachnid orders based on morphological characters. Zool J Linn Soc 150:221–265. doi:10.1111/j.1096-3642.2007.00284.x
Shultz JW, Pinto-da-Rocha R (2007) Morphology and functional anatomy. In: Pinto-da-Rocha R, Machado G, Giribet G (eds) Harvestmen: the biology of Opiliones. Harvard University Press, Cambridge, MA, pp 14–61
Simonnet F, Deutsch J, Quéinnec E (2004) Hedgehog is a segment polarity gene in a crustacean and a chelicerate. Dev Genes Evol 214:537–545. doi:10.1007/s00427-004-0435-z
Simonnet F, Célérier M-L, Quéinnec E (2006) Orthodenticle and empty spiracles genes are expressed in a segmental pattern in chelicerates. Dev Genes Evol 216:467–480. doi:10.1007/s00427-006-0093-4
Smrz J, Kovac L, Mikes J, Lukesova A (2013) Microwhip scorpions (Palpigradi) feed on heterotrophic cyanobacteria in Slovak caves – a curiosity among Arachnida. PLoS ONE 8:e75989. doi:10.1371/journal.pone.0075989
Snodgrass RE (1938) Evolution of the Annelida, Onychophora and Arthropoda. Smithson Misc Collect 97:1–159
Stollewerk A (2002) Recruitment of cell groups through Delta/Notch signalling during spider neurogenesis. Development 129:5339–5348
Stollewerk A, Chipman AD (2006) Neurogenesis in myriapods and chelicerates and its importance for understanding arthropod relationships. Integr Comp Biol 46:195–206. doi:10.1093/icb/icj020
Stollewerk A, Weller M, Tautz D (2001) Neurogenesis in the spider Cupiennius salei. Development 128:2673–2688
Stollewerk A, Schoppmeier M, Damen WGM (2003) Involvement of Notch and Delta genes in spider segmentation. Nature 423:863–865. doi:10.1038/nature01682
Strand E (1906) Studien über Bau und Entwicklung der Spinnen. Z Wiss Zool 80:515–543
Suzuki H, Kondo A (1994) Changes at the egg surface during the first maturation division in the spider Achaearanea japonica (Bös. et Str.). Zool Sci 11:693–700
Suzuki H, Kondo A (1995) Early embryonic development, including germ-disk stage, in the theridiid spider Achaearanea japonica (Bös. et Str.). J Morphol 224:147–157. doi:10.1002/jmor.1052240204
Talarico G, Palacios-Vargas JG, Fuentes Silva M, Alberti G (2006) Ultrastructure of tarsal sensilla and other integument structures of two Pseudocellus species (Ricinulei, Arachnida). J Morphol 267:441–463. doi:10.1002/jmor.10415
Talarico G, Garcia Hernandez LF, Michalik P (2008a) The male genital system of the New World Ricinulei (Arachnida): ultrastructure of spermatozoa and spermiogenesis with special emphasis on its phylogenetic implications. Arthropod Struct Dev 37:396–409. doi:10.1016/j.asd.2008.01.006
Talarico G, Palacios-Vargas JG, Alberti G (2008b) The pedipalp of Pseudocellus pearsei (Ricinulei, Arachnida) – ultrastructure of a multifunctional organ. Arthropod Struct Dev 37:511–521. doi:10.1016/j.asd.2008.02.001
Talarico G, Lipke E, Alberti G (2011) Gross morphology, histology, and ultrastructure of the alimentary system of Ricinulei (Arachnida) with emphasis on functional and phylogenetic implications. J Morphol 272:89–117. doi:10.1002/jmor.10897
Telford MJ, Thomas RH (1998a) Expression of homeobox genes shows chelicerate arthropods retain their deutocerebral segment. Proc Natl Acad Sci U S A 95:10671–10675
Telford MJ, Thomas RH (1998b) Of mites and zen: expression studies in a chelicerate arthropod confirm zen is a divergent Hox gene. Dev Genes Evol 208:591–594
Tsurusaki N, Cokendolpher JC (1990) Chromosomes of sixteen species of harvestmen (Arachnida, Opiliones, Caddidae and Phalangiidae). J Arachnol 18:151–166
Ungerer P, Scholtz G (2009) Cleavage and gastrulation in Pycnogonum litorale (Arthropoda, Pycnogonida): morphological support for the Ecdysozoa? Zoomorphology 128:263–274. doi:10.1007/s00435-009-0091-y
van der Meijden A, Langer F, Boistel R, Vagovic P, Heethoff M (2012) Functional morphology and bite performance of raptorial chelicerae of camel spiders (Solifugae). J Exp Biol 215:3411–3418. doi:10.1242/jeb.072926
Vargas-Vila MA, Hannibal RL, Parchem RJ, Liu PZ, Patel NH (2010) A prominent requirement for single-minded and the ventral midline in patterning the dorsoventral axis of the crustacean Parhyale hawaiensis. Development 137:3469–3476. doi:10.1242/dev.055160
Vilpoux K, Waloszek D (2003) Larval development and morphogenesis of the sea spider Pycnogonum litorale (Ström, 1762) and the tagmosis of the body of Pantopoda. Arthropod Struct Dev 32:349–383. doi:10.1016/j.asd.2003.09.004
Waloszek D, Dunlop JA (2002) A larval sea spider (Arthropoda: Pycnogonida) from the Upper Cambrian “Orsten” of Sweden, and the phylogenetic position of pycnogonids. Palaeontology 45:421–446. doi:10.1111/1475-4983.00244
Walzl MG, Gutweniger A, Wernsdorf P (2004) Embryology of mites: new techniques yield new findings. Phytophaga 14:163–181
Weygoldt P (1970) The biology of pseudoscorpions. Harvard University Press, Cambridge
Weygoldt P (1975) Untersuchungen zur Embryologie und Morphologie der Geißelspinne Tarantula marginemaculata CL Koch (Arachnida, Amblypygi, Tarantulidae). Zoomorphologie 82:137–199
Weygoldt P (1985) Ontogeny of the arachnid central nervous system. In: neurobiology of arachnids. Springer, Berlin/Heidelberg, p 20–37. doi:10.1007/978-3-642-70348-5_2
Weygoldt P (2000) Whip spiders (Chelicerata: Amblypygi): their biology, morphology and systematics, Whip spiders. Apollo Books {a}, Kirkeby Sand 19, DK-5771, Stenstrup
Weygoldt P, Paulus HF (1979) Untersuchungen zur Morphologie, Taxonomie und Phylogenie der Chelicerata. Z Zool Syst Evolution 17:177–200
Wheeler WC, Hayashi CY (1998) The phylogeny of the extant chelicerate orders. Cladistics 14:173–192
Willemart RH, Farine J-P, Gnaspini P (2009) Sensory biology of Phalangida harvestmen (Arachnida, Opiliones): a review, with new morphological data on 18 species. Acta Zool 90:209–227. doi:10.1111/j.1463-6395.2008.00341.x
Wilson MJ, Mckelvey BH, Heide S, Dearden PK (2010) Notch signaling does not regulate segmentation in the honeybee, Apis mellifera. Dev Genes Evol 220(1–12):179–190. doi:10.1007/s00427-010-0340-6
Wolff C, Hilbrant M (2011) The embryonic development of the central American wandering spider Cupiennius salei. Front Zool 8(1):15. doi:10.1186/1742-9994-8-15
Wolff C, Scholtz G (2013) Arthropod embryology: cleavage and germ band development. In: Minelli A, Boxshall G, Fusco G (eds) Arthropod biology and evolution. Springer, Berlin/Heidelberg, pp 63–90
Yamasaki T, Makioka T, Saito J (1988) Morphology. In: Sekiguchi L (ed) Biology of horseshoe crabs. Science House Co, Tokyo, pp 69–132
Yang XF, Yang X, Norma-Rashid Y, Lourenço WR, Zhu MS, Zhu M (2013) True lateral eye numbers for extant buthids: a new discovery on an old character. PLoS ONE 8:e55125. doi:10.1371/journal.pone.0055125
Yoshikura M (1969) Effects of ultraviolet irradiation on the embryonic development of a liphistiid spider, Heptathela kimurai. Kumamoto J Sci Ser B (Biol Geol) 9:57–108
Yoshikura M (1975) Comparative embryology and phylogeny of Arachnida. Kumamoto J Sci Ser B Sect 2 Biol 12:71–142
Zhang ZQ (2003) Mites of greenhouses: identification, biology and control. CABI Publishing, Wallingford
Acknowledgments
We thank Niko Prpic-Schäper and Andreas Wanninger for helpful comments on the manuscript.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Wien
About this chapter
Cite this chapter
Schwager, E.E., Schönauer, A., Leite, D.J., Sharma, P.P., McGregor, A.P. (2015). Chelicerata. In: Wanninger, A. (eds) Evolutionary Developmental Biology of Invertebrates 3. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1865-8_5
Download citation
DOI: https://doi.org/10.1007/978-3-7091-1865-8_5
Publisher Name: Springer, Vienna
Print ISBN: 978-3-7091-1864-1
Online ISBN: 978-3-7091-1865-8
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)