Skip to main content

Abstract

The homology concept was introduced into pre-Darwinian evolutionary biology by Richard Owen as referring to “the same organ in different animals regardless of form and function”. Since then, it has played not only a fundamental role as an organizing idea in comparative anatomy but also an important role in preparing the way for evolutionary biology. Homology is the primary evidence for phylogenetic relationships among organisms, and whenever we project experimental results from a model organism onto humans, we assume homology among the mechanisms in humans and the model organism. Homology was fully integrated into the Darwinian tradition through Lankester’s redefinition as an organ in two species that is derived from the same organ in the most recent common ancestor of the two species. Nevertheless, the homology concept remains controversial primarily because it seems to escape a simple rigorous definition. Homology shares this attribute with other fundamental concepts like that of species or gene. In addition, homology is hard to pin down mechanistically. Apparently, homology is among the concepts biologists have a hard time living with but certainly can’t live without. This situation often leads to considerable frustration among biologists, and some have suggested abandoning the concept altogether and may even result in proposals to abandon the concept altogether, a move that is hardly feasible.

Chapter vignette artwork by Brigitte Baldrian. © Brigitte Baldrian and Andreas Wanninger.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amundson R (2005) The changing role of the embryo in evolutionary thought: roots of Evo-Devo. Cambridge University Press, Cambridge, xii, 280pp

    Google Scholar 

  • Arendt D (2008) The evolution of cell types in animals: emerging principles from molecular studies. Nat Rev Genet 9:868–882

    Article  CAS  PubMed  Google Scholar 

  • Brawand D, Soumillon M, Necsulea A, Julien P, Csardi G, Harrigan P et al (2011) The evolution of gene expression levels in mammalian organs. Nature 478:343–348

    Article  CAS  PubMed  Google Scholar 

  • Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10:1213–1218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carroll SB (2008) Evo-Devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134:25–34

    Article  CAS  PubMed  Google Scholar 

  • Czerny T, Halder G, Kloter U, Souabni A, Gehring WJ, Busslinger M (1999) Twin of eyeless, a second Pax-6 gene of Drosophila, acts upstream of eyeless in the control of eye development. Mol Cell 3:297–307

    Article  CAS  PubMed  Google Scholar 

  • Damen WG (2007) Evolutionary conservation and divergence of the segmentation process in arthropods. Dev Dyn 236:1379–1391

    Article  CAS  PubMed  Google Scholar 

  • Davidson E (2001) Genomic regulatory systems. Academic, San Diego, xii, 261

    Google Scholar 

  • de Beer GR (1971) Homology, an unsolved problem. Oxford University Press, London, 16pp

    Google Scholar 

  • Deutsch J (2005) Hox and wings. Bioessays 27:673–675

    Article  PubMed  Google Scholar 

  • Dobzhansky T (1937) Genetics of the evolutionary process. Columbia University Press, New York, xiii, 505

    Google Scholar 

  • Donoghue MJ (1989) Phylogenies and the analysis of evolutionary sequences, with examples from seed plants. Evolution 43:1137–1156

    Article  Google Scholar 

  • Donoghue MJ (1992) Homology. In: Keller EF, Lloyd EA (eds) Keywords in evolutionary biology. Harvard University Press, Cambridge, MA, pp 171–179

    Google Scholar 

  • Felsenstein J (2003) Inferring phylogenies. Sinauer, Sunderland, xx, 664

    Google Scholar 

  • Friedrich M (2006) Ancient mechanisms of visual sense organ development based on comparison of the gene networks controlling larval eye, ocellus, and compound eye specification in Drosophila. Arthropod Struct Dev 35:357–378

    Article  PubMed  Google Scholar 

  • Geeta R (2003) Structure trees and species trees: what they say about morphological development and evolution. Evol Dev 5:609–621

    Article  CAS  PubMed  Google Scholar 

  • Gegenbaur C (1876) Zur Morphologie der Gliedmassen der Wirbeltiere. Morphologisches Jahrb 2:396–420

    Google Scholar 

  • Ghiselin MT (2005) Homology as a relation of correspondence between parts of individuals. Theory Biosci 124:91–103

    Article  PubMed  Google Scholar 

  • Graf T, Enver T (2009) Forcing cells to change lineages. Nature 462:587–594

    Article  CAS  PubMed  Google Scholar 

  • Graur D, Li W-H (2000) Fundamentals of molecular evolution, 2nd edn. Sinauer Ass. Inc, Sunderland, xiv, 481

    Google Scholar 

  • Hall BK (2003) Descent with modification: the unity underlying homology and homoplasy as seen through an analysis of development and evolution. Biol Rev Camb Philos Soc 78:409–433

    Article  PubMed  Google Scholar 

  • Hallgrimsson B, Jamniczky H, Young NM, Rolian C, Parsons TE, Boughner JC et al (2009) Deciphering the palimpsest: studying the relationship between morphological integration and phenotypic covariation. Evol Biol 36:355

    Article  PubMed Central  PubMed  Google Scholar 

  • Hebenstreit D, Fang M, Gu M, Charoensawan V, van Oudenaarden A, Teichmann SA (2011) RNA sequencing reveals two major classes of gene expression levels in metazoan cells. Mol Syst Biol 7:497

    Article  PubMed Central  PubMed  Google Scholar 

  • Hennig W (1966) Phylogenetic systematics. University of Illinois Press, Urbana, 263

    Google Scholar 

  • Hobert O (2011) Regulation of terminal differentiation programs in the nervous system. Annu Rev Cell Dev Biol 27:681–696

    Article  CAS  PubMed  Google Scholar 

  • Kin K, Nnamani MC, Lynch VJ, Michaelides E, Wagner GP (2015) Cell type phylogenetics and the origin of endometrial stromal cells. Cell Reports 10:1398–1409

    Google Scholar 

  • Lankester RE (1870) On the use of the term homology in modern zoology, and the distinction between homogenetic and homoplastic agreement. Annu Mag Nat Hist 6:34–43

    Article  Google Scholar 

  • Lynch VJ, Tanzer A, Wang Y, Leung FC, Gellersen B, Emera D et al (2008) Adaptive changes in the transcription factor HoxA-11 are essential for the evolution of pregnancy in mammals. Proc Natl Acad Sci U S A 105:14928–14933

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lynch VJ, May G, Wagner GP (2011) Regulatory evolution through divergence of a phosphoswitch in the transcription factor CEBPB. Nature 480:383–386

    Article  CAS  PubMed  Google Scholar 

  • Maddison WP, Donoghue MJ, Maddison DR (1984) Outgroup analysis and parsimony. Syst Zool 33:83–103

    Article  Google Scholar 

  • Mayr E (1942) Systematics and the origin of species. Columbia University Press, New York, xiv, 334

    Google Scholar 

  • Mayr E (1982) The growth of biological thought. The Belknap Press, Cambridge, ix, 974

    Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Müller GB (2010) Epigenetic innovation. In: Pigliucci M, Müller GB (eds) Evolution – the extended synthesis. MIT Press, Boston, pp 307–332

    Chapter  Google Scholar 

  • Müller GB, Newman SA (1999) Generation, integration, autonomy: three steps in the evolution of homology. In: Bock GR, Cardew G (eds) Homology. Wiley, New York, pp 65–79

    Google Scholar 

  • Müller GB, Wagner GP (1991) Novelty in evolution: restructuring the concept. Ann Rev Ecol Syst 22:229–256

    Article  Google Scholar 

  • Musser J, Wagner GP, Prum RO (2015) Nuclear β-catenin expression supports homology of feather, avian scutate scale, and alligator scale early development J Exp Zoo (Mol Dev Evol) [in press]

    Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York, x, 512

    Google Scholar 

  • Neph S, Stergachis AB, Reynolds A, Sandstrom R, Borenstein E, Stamatoyannopoulos JA (2012a) Circuitry and dynamics of human transcription factor regulatory networks. Cell 150:1274–1286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Neph S, Vierstra J, Stergachis AB, Reynolds AP, Haugen E, Vernot B et al (2012b) An expansive human regulatory lexicon encoded in transcription factor footprints. Nature 489:83–90

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oakley TH (2003) The eye as a replicating and diverging, modular developmental unit. Trends Ecol Evol 18:623–627

    Article  Google Scholar 

  • Oakley TH, Plachetzki DC, Rivera AS (2007) Furcation, field-splitting, and the evolutionary origins of novelty in arthropod photoreceptors. Arthropod Struct Dev 36:386–400

    Article  PubMed  Google Scholar 

  • Oliveri P, Tu Q, Davidson EH (2008) Global regulatory logic for specification of an embryonic cell lineage. Proc Natl Acad Sci U S A 105:5955–5962

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Owen R (1848) On the archetype and homologies of the vertebrate skeleton. Voorst, London, viii, 203

    Google Scholar 

  • Patterson C (1982) Morphological characters and homology. In: Joysey KA, Friday AE (eds) Problems of phylogenetic reconstruction. Academic, London, pp 21–74

    Google Scholar 

  • Pavlicev M, Widder S (2015) Wiring for independence: positive feedback motifs facilitate individuation of traits in development and evolution. J Exp Zool (Mol Dev Evol) 324B:104–113

    Google Scholar 

  • Raff R (1996) The shape of life. Chicago University Press, Chicago, xxiii, 520

    Google Scholar 

  • Ree RH, Donoghue MJ (1999) Inferring rates of change in flower symmetry in asterid angiosperms. Syst Biol 48:633–641

    Article  Google Scholar 

  • Remane A (1952) Die Grundlagen des natürlichen systems, der vergleichenden Anatomie und der Phylogenetik. Akademische Verlagsgesellschaft Geest & Portig, Leipzig, vi, 364

    Google Scholar 

  • Riedl R (1978) Order in living organisms: a systems analysis of evolution. Wiley, New York, xx, 313

    Google Scholar 

  • Rieppel OC (1988) Fundamentals of comparative biology. Birkhäuser, Basel

    Google Scholar 

  • Roth VL (1988) The biological basis of homology. In: Humphries CJ (ed) Ontogeny and systematics. Columbia University Press, New York, pp 1–26

    Google Scholar 

  • Simpson GG (1961) Principles of animal taxonomy. Columbia University Press, New York, 247pp

    Google Scholar 

  • Sommer RJ, Sternberg PW (1994) Changes of induction and competence during the evolution of vulva development in nematodes. Science 265:114–118

    Article  CAS  PubMed  Google Scholar 

  • Spemann H (1915) Zur Geschichte und Kritik des Begriffs der Homologie. In: Chun C, Johannsen W (eds) Allgemeine Biologie, vol 3. Teubner, Leipzig, pp 63–86

    Google Scholar 

  • Tomoyasu Y, Wheeler SR, Denell RE (2005) Ultrabithorax is required for membranous wing identity in the beetle Tribolium castaneum. Nature 433:643–647

    Article  CAS  PubMed  Google Scholar 

  • Wagner GP (1994) Homology and the mechanisms of development. In: Hall BK (ed) Homology: the hierarchical basis of comparative biology. Academic, San Diego, xiii, 478pp

    Google Scholar 

  • Wagner GP (2007) The developmental genetics of homology. Nat Rev Genet 8:473–479

    Article  CAS  PubMed  Google Scholar 

  • Wagner GP (2014) Homology, genes and evolutionary Innovation. Princeton University Press, Princeton

    Book  Google Scholar 

  • Wagner GP, Lynch VJ (2010) Evolutionary novelties. Curr Biol 20:R48–R52

    Article  CAS  PubMed  Google Scholar 

  • Wagner GP, Misof BY (1993) How can a character be developmentally constrained despite variation in developmental pathways? J Evol Biol 6:449–455

    Article  Google Scholar 

  • Wagner GP, Kin K, Lynch VJ (2012) Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci 131:281–285

    Article  CAS  PubMed  Google Scholar 

  • Wagner GP, Kin K, Lynch VJ (2013) A model based criterion for gene expression calls using RNA-seq data. Theory Biosci 132:159–164

    Article  CAS  PubMed  Google Scholar 

  • Wake DB (2003) Homology and homoplasy. In: Hall BK, Olson WM (eds) Keywords and concepts in evolutionary developmental biology, vol 191–201. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Wang Z, Young RL, Xue H, Wagner GP (2011) Transcriptomic analysis of avian digits reveals conserved and derived digit identities in birds. Nature 477:583–586

    Article  CAS  PubMed  Google Scholar 

  • Weatherbee SD, Halder G, Kim J, Hudson A, Carroll S (1998) Ultrabithorax regulates genes at several levels of the wing-patterning hierarchy to shape the development of the Drosophila haltere. Genes Dev 12:1474–1482

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weatherbee SD, Frederik Nijhout H, Grunert LW, Halder G, Galant R, Selegue J et al (1999) Ultrabithorax function in butterfly wings and the evolution of insect wing patterns. Curr Biol 9:109–115

    Article  CAS  PubMed  Google Scholar 

  • Weiss KM (1990) Duplication with variation: metameric logic in evolution from genes to morphology. Yearb Phys Anthropol 33:1–23

    Article  Google Scholar 

  • Wilkins AS (2002) The evolution of developmental pathways. Sinauer Assoc, Sunderland, xvii, 603pp

    Google Scholar 

  • Wray GA, Abouheif E (1998) When is homology not homology? Curr Opin Genet Dev 8:675–680

    Article  CAS  PubMed  Google Scholar 

  • Young RL, Caputo V, Giovannotti M, Kohlsdorf T, Vargas AO, May GE et al (2009) Evolution of digit identity in the three-toed skink Chalcides chalcides: a new case of digit identity frame shift. Evol Dev 11:647–658

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Professor Andreas Wanninger for the invitation to participate in this important project as well as for comments and corrections to a previous version of this paper. I am also grateful to Jake Musser for suggestions and edits of the manuscript. Finally, I thank all current and former members of my lab for intellectual companionship during the long time these ideas were developed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter P. Wagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Wagner, G.P. (2015). Homology in the Age of Developmental Genomics. In: Wanninger, A. (eds) Evolutionary Developmental Biology of Invertebrates 1. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1862-7_2

Download citation

Publish with us

Policies and ethics