Advertisement

Abstract

Tunicates are a group of marine filter-feeding animals that have been traditionally divided into three classes: (1) Appendicularia, also known as larvaceans because their free-swimming and pelagic adult stage resembles a larva; (2) Thaliacea, which includes three orders of free-swimming and pelagic adult forms with complex life cycles (Salpida, Pyrosomida, and Doliolida); and (3) Ascidiacea, colloquially referred to as sea squirts, which is comprised of diverse sessile solitary and colonial species and includes some of the most extensively studied tunicates. It was mainly the ascidians that served as the inspiration for seminal studies in developmental biology and evolution conducted last century by British zoologist and prolific writer N. J. Berrill, whose quote appears above

Keywords

Neural Tube Neural Plate Notochord Cell Larval Muscle Colonial Ascidian 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Many thanks to Andreas Wanninger and Ivan Dias for comments on the manuscript and to Florian Razy-Krajka for thoughtful discussions. Thanks to Leda Restrepo, Gabriela Agurto, Joanna Greer, and Paul Caiger for contributing with some figures. We would also like to thank all the authors who have granted us permission to modify and adapt figures from their excellent papers. This work was supported by an “Apoio aos Novos Docentes” Grant from Universidade de São Paulo, an Assistant Professor Grant from Universidad de los Andes and a Prometeo Research Award from the Secretaría Nacional de Ciencia, Tecnología e Innovación (Senescyt-Ecuador) to F. D. B., and by a National Science Foundation Postdoctoral Research Fellowship (under grant NSF-1161835) to A. S.

References

  1. Abbott CL, Ebert D, Tabata A, Therriault TW (2011) Twelve microsatellite markers in the invasive tunicate, Didemnum vexillum, isolated from low genome coverage 454 pyrosequencing reads. Conserv Genet Resour 3:79–81Google Scholar
  2. Abitua PB, Wagner E, Navarrete IA, Levine M (2012) Identification of a rudimentary neural crest in a non-vertebrate chordate. Nature 492:104–107PubMedCentralPubMedGoogle Scholar
  3. Alldredge AL (1977) House morphology and mechanisms of feeding in the Oikopleuridae (Tunicata, Appendicularia). J Zool 181:175–188Google Scholar
  4. Alldredge A, Madin L (1982) Pelagic tunicates: unique herbivores in the marine plankton. Bioscience 32:655–663Google Scholar
  5. Allen BM (1925) The effects of extirpation of the thyroid and pituitary glands upon the limb development of anurans. J Exp Zool 42:13–30Google Scholar
  6. Amemiya CT, Powers TP, Prohaska SJ, Grimwood J, Schmutz J, Dickson M, Miyake T, Schoenborn MA, Myers RM, Ruddle FH (2010) Complete HOX cluster characterization of the coelacanth provides further evidence for slow evolution of its genome. Proc Natl Acad Sci 107:3622–3627PubMedCentralPubMedGoogle Scholar
  7. Barrington EJW (1967) Invertebrate structure and function. Thomas Nelson Sons Ltd., London, p 550, First EditGoogle Scholar
  8. Bassham S, Postlethwait JH (2005) The evolutionary history of placodes: a molecular genetic investigation of the larvacean urochordate Oikopleura dioica. Development 132:4259–4272PubMedGoogle Scholar
  9. Bates WR (1995) Direct development in the ascidian Molgula retortiformis (Verrill, 1871). Biol Bull 188:16–22Google Scholar
  10. Bates WR (2002) The phylogenetic significance of maximum direct development in the ascidian, Molgula pacifica. Invertebr Reprod Dev 41:185–192Google Scholar
  11. Bates WR, Mallett JE (1991) Anural development of the ascidian Molgula pacifica (Huntsman). Can J Zool 69:618–627Google Scholar
  12. Bateson W (1884) Memoirs: the early stages in the development of Balanoglossus (sp. incert.). Q J Microsc Sci 2:208–236Google Scholar
  13. Bateson W (1886) Continued account of the later stages in the development of Balanoglossus kowalevskii, and of the morphology of the enteropneusta. Q J Microsc Sci 26:511–534Google Scholar
  14. Beh J, Shi W, Levine M, Davidson B, Christiaen L (2007) FoxF is essential for FGF-induced migration of heart progenitor cells in the ascidian Ciona intestinalis. Development 134:3297–3305PubMedGoogle Scholar
  15. Berrill NJ (1928) The identification and validity of certain species of ascidians. J Mar Biol Assoc U K N Ser 15:159–175Google Scholar
  16. Berrill NJ (1930) Studies in tunicate development. Part I. General physiology of development of simple ascidians. Phil Trans R Soc Lond Ser B 218:37–78, Containing Papers of a Biological CharacterGoogle Scholar
  17. Berrill NJ (1931) Studies in tunicate development. Part II. Abbreviation of development in the Molgulidae. Phil Trans R Soc Lond Ser B 219:281–346, Containing Papers of a Biological CharacterGoogle Scholar
  18. Berrill NJ (1932) The mosaic development of the ascidian egg. Biol Bull 63:381–386Google Scholar
  19. Berrill NJ (1935a) Studies in tunicate development. Part IV. Asexual reproduction. Philos Trans R Soc Lond B Biol Sci 225:327–379Google Scholar
  20. Berrill NJ (1935b) Studies in tunicate development. Part III. Differential retardation and acceleration. Philos Trans R Soc Lond B Biol Sci 225:255–326Google Scholar
  21. Berrill NJ (1936) Studies in tunicate development. Part V. The evolution and classification of ascidians. Philos Trans R Soc Lond B Biol Sci 226:43–70Google Scholar
  22. Berrill NJ (1947a) The developmental cycle of Botrylloides. Q J Microsc Sci 3:393–407Google Scholar
  23. Berrill NJ (1947b) The structure, development and budding of the ascidian, Eudistoma. J Morphol 81:269–281PubMedGoogle Scholar
  24. Berrill NJ (1947c) The structure, tadpole and budding of the ascidian Pycnoclavella aurilucens Garstang. J Mar Biol Assoc U K 27:245–251Google Scholar
  25. Berrill NJ (1948a) Budding and the reproductive cycle of Distaplia. Q J Microsc Sci 3:253–289Google Scholar
  26. Berrill NJ (1948b) The development, morphology and budding of the ascidian Diazona. J Mar Biol Assoc U K 27:389–399Google Scholar
  27. Berrill NJ (1948c) The gonads, larvae, and budding of the polystyelid ascidians Stolonica and Distomus. J Mar Biol Assoc U K 27:633–650Google Scholar
  28. Berrill NJ (1948d) The nature of the ascidian tadpole, with reference to Boltenia echinata. J Morphol 82:269–285PubMedGoogle Scholar
  29. Berrill NJ (1948e) Structure, tadpole and bud formation in the ascidian Archidistoma. J Mar Biol Assoc U K 27:380–388Google Scholar
  30. Berrill NJ (1950a) Budding and development in Salpa. J Morphol 87:553–606PubMedGoogle Scholar
  31. Berrill NJ (1950b) Budding in Pyrosoma. J Morphol 87:537–552PubMedGoogle Scholar
  32. Berrill NJ (1951) Regeneration and budding in tunicates. Biol Rev 26:456–475Google Scholar
  33. Berrill NJ (1955) The origin of vertebrates. Clarendon, Oxford, p 257Google Scholar
  34. Bertrand V, Hudson C, Caillol D, Popovici C, Lemaire P (2003) Neural tissue in ascidian embryos is induced by FGF9/16/20, acting via a combination of maternal GATA and Ets transcription factors. Cell 115:615–627PubMedGoogle Scholar
  35. Bishop CD, Bates WR, Brandhorst BP (2001) Regulation of metamorphosis in ascidians involves NO/cGMP signaling and HSP90. J Exp Zool 289:374–384PubMedGoogle Scholar
  36. Bone Q (1992) On the locomotion of ascidian tadpole larvae. J Mar Biol Assoc U K 72:161–186Google Scholar
  37. Bone Q (1998) The biology of pelagic tunicates. Oxford University Press, OxfordGoogle Scholar
  38. Bone Q, Carre C, Chang P (2003) Tunicate feeding filters. J Mar Biol Assoc UK 83:907–919Google Scholar
  39. Bouchard F, Huneman P (2013) From groups to individuals: evolution and emerging individuality. MIT Press, Cambridge, MAGoogle Scholar
  40. Bouquet J, Spriet E, Troedsson C, Otterrå H, Chourrout D, Thompson EM (2009) Culture optimization for the emergent zooplanktonic model organism Oikopleura dioica. J Plankton Res 31:359–370PubMedCentralPubMedGoogle Scholar
  41. Brewin BI (1956) The Growth and Development of a Viviparous Compound Ascidian, Hypsistozoa fasmeriana. Q J Microsc Sci 97:435–454Google Scholar
  42. Brien P, Brien-Gavage E (1927) Contribution a l’etude de la blastogenese des Tuniciers. III. Bourgeonnement de Clavelina lepadiformis Müller. Rec Inst Zool Torley-Rousseau B31–81Google Scholar
  43. Brooks WK (1893) The genus salpa. The Johns Hopkins Press, Baltimore, p 523Google Scholar
  44. Brown DD, Cai L (2007) Amphibian metamorphosis. Dev Biol 306(1):20–33PubMedCentralPubMedGoogle Scholar
  45. Brown FD, Swalla BJ (2007) Vasa expression in a colonial ascidian, Botrylloides violaceus. Evol Dev 9:165–177PubMedGoogle Scholar
  46. Brown FD, Swalla BJ (2012) Evolution and development of budding by stem cells: ascidian coloniality as a case study. Dev Biol 369:151–162PubMedGoogle Scholar
  47. Brown CD, Johnson DS, Sidow A (2007) Functional architecture and evolution of transcriptional elements that drive gene coexpression. Science 317:1557–1560PubMedGoogle Scholar
  48. Brown FD, Prendergast A, Swalla BJ (2008) Man is but a worm: chordate origins. Genesis 46:605–613PubMedGoogle Scholar
  49. Brown FD, Tiozzo S, Roux MM, Ishizuka K, Swalla BJ, De Tomaso AW (2009) Early lineage specification of long-lived germline precursors in the colonial ascidian Botryllus schlosseri. Development 136:3485–3494PubMedCentralPubMedGoogle Scholar
  50. Calcott B, Sterelny K (eds) (2011) The major transitions in evolution revisited. The MIT Press, Cambridge, MA, 319Google Scholar
  51. Cameron CB, Garey JR, Swalla BJ (2000) Evolution of the chordate body plan: new insights from phylogenetic analyses of deuterostome phyla. Proc Natl Acad Sci U S A 97(9):4469–4474PubMedCentralPubMedGoogle Scholar
  52. Carosa E, Fanelli A, Ulisse S, Di Lauro R, Rall JE, Jannini EA (1998) Ciona intestinalis nuclear receptor 1: a member of steroid/thyroid hormone receptor family. Proc Natl Acad Sci U S A 95(19):11152–11157PubMedCentralPubMedGoogle Scholar
  53. Castellano I, Ercolesi E, Palumbo A (2014) Nitric oxide affects ERK signaling through down-regulation of MAP kinase phosphatase levels during larval development of the ascidian Ciona intestinalis. PLoS One 9:e102907PubMedCentralPubMedGoogle Scholar
  54. Cavey MJ (1982) Myogenic events in compound ascidian larvae. Am Zool 22:807–815Google Scholar
  55. Cavey MJ, Cloney RA (1976) Ultrastructure and differentiation of ascidian muscle. Cell Tissue Res 174:289–313PubMedGoogle Scholar
  56. Chabry L (1887). Embryologie normale et teratologique des Ascidie. In: Alcan F (ed). Paris, p 161Google Scholar
  57. Chambon J-P, Soule J, Pomies P, Fort P, Sahuquet A, Alexandre D, Mangeat P-H, Baghdiguian S (2002) Tail regression in Ciona intestinalis (Prochordate) involves a Caspase-dependent apoptosis event associated with ERK activation. Development 129:3105–3114PubMedGoogle Scholar
  58. Chambon J-P, Nakayama A, Takamura K, McDougall A, Satoh N (2007) ERK-and JNK-signalling regulate gene networks that stimulate metamorphosis and apoptosis in tail tissues of ascidian tadpoles. Development 134:1203–1219PubMedGoogle Scholar
  59. Chen JS, San Pedro M, Zeller RW (2011) miR-124 function during Ciona intestinalis neuronal development includes extensive interaction with the notch signaling pathway. Development 138:4943–4953PubMedGoogle Scholar
  60. Christiaen L, Davidson B, Kawashima T, Powell W, Nolla H, Vranizan K, Levine M (2008) The transcription/migration interface in heart precursors of Ciona intestinalis. Science 320:1349PubMedGoogle Scholar
  61. Christiaen L, Stolfi A, Davidson B, Levine M (2009) Spatio-temporal intersection of Lhx3 and Tbx6 defines the cardiac field through synergistic activation of Mesp. Dev Biol 328:552–560PubMedGoogle Scholar
  62. Cloney RA (1982) Ascidian larvae and the events of metamorphosis. Am Zool 22:817–826Google Scholar
  63. Cole AG, Meinertzhagen IA (2004) The central nervous system of the ascidian larva: mitotic history of cells forming the neural tube in late embryonic Ciona intestinalis. Dev Biol 271:239–262PubMedGoogle Scholar
  64. Collins AG, Valentine JW (2001) Defining phyla: evolutionary pathways to metazoan body plans. Evol Dev 3:432–442PubMedGoogle Scholar
  65. Comes S, Locascio A, Silvestre F, d’Ischia M, Russo GL, Tosti E, Branno M, Palumbo A (2007) Regulatory roles of nitric oxide during larval development and metamorphosis in Ciona intestinalis. Dev Biol 306:772–784PubMedGoogle Scholar
  66. Conklin EG (1905a) Mosaic development in ascidian eggs. J Exp Zool 2:145–223Google Scholar
  67. Conklin EG (1905b) Organ-forming substances in the eggs of ascidians. Biol Bull 8:205Google Scholar
  68. Conklin EG (1905c) The organization and cell-lineage of the ascidian egg. Academy of Natural Sciences of Philadelphia, Philadelphia, p 175Google Scholar
  69. Cooley J, Whitaker S, Sweeney S, Fraser S, Davidson B (2011) Cytoskeletal polarity mediates localized induction of the heart progenitor lineage. Nat Cell Biol 13:952–957PubMedCentralPubMedGoogle Scholar
  70. Corbo JC, Levine M, Zeller RW (1997) Characterization of a notochord-specific enhancer from the Brachyury promoter region of the ascidian, Ciona intestinalis. Development 124:589–602PubMedGoogle Scholar
  71. D’Agati P, Cammarata M (2006) Comparative analysis of thyroxine distribution in ascidian larvae. Cell Tissue Res 323:529–535PubMedGoogle Scholar
  72. Darras S, Nishida H (2001) The BMP/CHORDIN antagonism controls sensory pigment cell specification and differentiation in the ascidian embryo. Dev Biol 236:271–288PubMedGoogle Scholar
  73. David B, Mooi R (2014) How Hox genes can shed light on the place of echinoderms among the deuterostomes. EvoDevo 5:22PubMedCentralPubMedGoogle Scholar
  74. Davidson B, Levine M (2003) Evolutionary origins of the vertebrate heart: specification of the cardiac lineage in Ciona intestinalis. Proc Natl Acad Sci 100:11469–11473PubMedCentralPubMedGoogle Scholar
  75. Davidson B, Swalla BJ (2001) Isolation of genes involved in ascidian metamorphosis: epidermal growth factor signaling and metamorphic competence. Dev Genes Evol 211:190–194PubMedGoogle Scholar
  76. Davidson B, Swalla BJ (2002) A molecular analysis of ascidian metamorphosis reveals activation of an innate immune response. Development 129:4739–4751PubMedGoogle Scholar
  77. Davidson B, Jacobs M, Swalla B (2004) The individual as a module: metazoan evolution and coloniality. In: Schlosser G, Wagner GP (eds.) Modularity in development and evolution. University of Chicago Press, Chicago, pp 443–465Google Scholar
  78. Davidson B, Shi W, Levine M (2005) Uncoupling heart cell specification and migration in the simple chordate Ciona intestinalis. Development 132:4811–4818PubMedGoogle Scholar
  79. Davidson B, Shi W, Beh J, Christiaen L, Levine M (2006) FGF signaling delineates the cardiac progenitor field in the simple chordate, Ciona intestinalis. Genes Dev 20:2728PubMedCentralPubMedGoogle Scholar
  80. Degnan B, Souter D, Degnan SM, Long SC (1997) Induction of metamorphosis with potassium ions requires development of competence and an anterior signalling centre in the ascidian Herdmania momus. Dev Genes Evol 206:370–376Google Scholar
  81. Dehal P, Satou Y, Campbell RK, Chapman J, Degnan B, De Tomaso A, Davidson B, Di Gregorio A, Gelpke M, Goodstein DM (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298:2157PubMedGoogle Scholar
  82. Delsuc F, Brinkmann H, Chourrout D, Philippe H (2006) Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439:965–968PubMedGoogle Scholar
  83. Delsuc F, Tsagkogeorga G, Lartillot N, Philippe H (2008) Additional molecular support for the new chordate phylogeny. Genesis 46:592–604PubMedGoogle Scholar
  84. Deng W, Nies F, Feuer A, Bočina I, Oliver D, Jiang D (2013) Anion translocation through an Slc26 transporter mediates lumen expansion during tubulogenesis. Proc Natl Acad Sci 110:14972–14977PubMedCentralPubMedGoogle Scholar
  85. Denker E, Bočina I, Jiang D (2013) Tubulogenesis in a simple cell cord requires the formation of bi-apical cells through two discrete Par domains. Development 140:2985–2996PubMedGoogle Scholar
  86. Denoeud F, Henriet S, Mungpakdee S, Aury J-M, Da Silva C, Brinkmann H, Mikhaleva J, Olsen LC, Jubin C, Cañestro C (2010) Plasticity of animal genome architecture unmasked by rapid evolution of a pelagic tunicate. Science 330:1381–1385PubMedCentralPubMedGoogle Scholar
  87. Deviney EM (1934) The behavior of isolated pieces of ascidian (Perophora viridis) stolon as compared with ordinary budding. J Elisha Mitchell Sci Soc 49(2):185–224Google Scholar
  88. Dohrn A (1886) Thyroidea bei Petromyzon, Amphioxus und den Tunicaten. Mitt Zool Sta Neapel 6:49–92Google Scholar
  89. Dong B, Horie T, Denker E, Kusakabe T, Tsuda M, Smith WC, Jiang D (2009) Tube formation by complex cellular processes in Ciona intestinalis notochord. Dev Biol 330:237–249PubMedCentralPubMedGoogle Scholar
  90. Dong B, Deng W, Jiang D (2011) Distinct cytoskeleton populations and extensive crosstalk control Ciona notochord tubulogenesis. Development 138:1631–1641PubMedGoogle Scholar
  91. Donia MS, Fricke WF, Partensky F, Cox J, Elshahawi SI, White JR, Phillippy AM, Schatz MC, Piel J, Haygood MG (2011) Complex microbiome underlying secondary and primary metabolism in the tunicate-Prochloron symbiosis. Proc Natl Acad Sci 108:E1423–E1432Google Scholar
  92. Dufour HD, Chettouh Z, Deyts C, de Rosa R, Goridis C, Joly J-S, Brunet J-F (2006) Precraniate origin of cranial motoneurons. Proc Natl Acad Sci 103:8727–8732PubMedCentralPubMedGoogle Scholar
  93. Eri R, Arnold JM, Hinman VF, Green KM, Jones MK, Degnan BM, Lavin MF (1999) Hemps, a novel EGF-like protein, plays a central role in ascidian metamorphosis. Development 126:5809–5818PubMedGoogle Scholar
  94. Ferrier DE, Holland PW (2002) Ciona intestinalis ParaHox genes: evolution of Hox/ParaHox cluster integrity, developmental mode, and temporal colinearity. Mol Phylogenet Evol 24:412–417PubMedGoogle Scholar
  95. Field KG, Olsen GJ, Lane DJ, Giovannoni SJ, Ghiselin MT, Raff EC, Pace NR, Raff RA (1988) Molecular phylogeny of the animal kingdom. Science 239:748–753PubMedGoogle Scholar
  96. Fischer JL (1992) The embryological oeuvre of Laurent Chabry. Dev Genes Evol 201:125–127Google Scholar
  97. Fredriksson G, Öfverholm T, Ericson LE (1988) Iodine binding and peroxidase activity in the endostyle of Salpa Fusiformis, Thalia Democratica, Dolioletta Gegenbauri and Doliolum Nationalis (Tunicata, Thaliacea). Cell Tissue Res 253(2):403–411PubMedGoogle Scholar
  98. Freeman G (1964) The role of blood cells in the process of asexual reproduction in the tunicate Perophora viridis. J Exp Zool 156:157–183PubMedGoogle Scholar
  99. Fujii S, Nishio T, Nishida H (2008) Cleavage pattern, gastrulation, and neurulation in the appendicularian, Oikopleura dioica. Dev Genes Evol 218:69–79PubMedGoogle Scholar
  100. Fukumoto M (1971) Experimental control of budding and stolon elongation in Perophora orientalis, a compound ascidian. Develop Growth Differ 13:73–88Google Scholar
  101. Furlow JD, Neff ES (2006) A developmental switch induced by thyroid hormone: xenopus laevis metamorphosis. Trends Endocrinol Metab 17(2):40–47Google Scholar
  102. Garstang W (1894) Preliminary note on a new theory of the phylogeny of the Chordata. Zool Anz 17:122–125Google Scholar
  103. Garstang W (1928) Memoirs: the morphology of the Tunicata, and its bearings on the phylogeny of the Chordata. Q J Microsc Sci 2:51–187Google Scholar
  104. Gasparini F, Degasperi V, Shimeld SM, Burighel P, Manni L (2013) Evolutionary conservation of the placodal transcriptional network during sexual and asexual development in chordates. Dev Dyn 242:752–766PubMedGoogle Scholar
  105. Gerhart J, Lowe C, Kirschner M (2005) Hemichordates and the origin of chordates. Curr Opin Genet Dev 15:461–467PubMedGoogle Scholar
  106. Godeaux J (1955) Stades larvaires du Doliolum. Acad Roy Belg Bull CI Sci 41:769–787Google Scholar
  107. Gomes AS, Alves RN, Rønnestad I, Power DM (2014) Orchestrating change: the thyroid hormones and GI-tract development in flatfish metamorphosis. Gen Comp Endocrinol (in press) doi: 10.1016/j.ygcen.2014.06.012
  108. Govindarajan AF, Bucklin A, Madin LP (2010) A molecular phylogeny of the Thaliacea. J Plankton Res 33:843–853Google Scholar
  109. Grave C (1926) Molgula citrina (Alder and Hancock). Activities and structure of the free-swimming larva. J Morphol 42(2):453–471Google Scholar
  110. Grobben K (1908) Die systematische Einteilung des Tierreiches. Verh Zool Bot Ges Wien 58:l–5Google Scholar
  111. Gudernatsch J (1912) Feeding experiments on tadpoles. Arch Entwicklungsmechanik Organismen 35:457–483Google Scholar
  112. Gudo M, Syed T (2008) 100 years of deuterostomia (Grobben 1908): cladogenetic and anagenetic relations within the Notoneuralia domain. arXiv preprint arXiv:08112189Google Scholar
  113. Hadfield KA, Swalla BJ, Jeffery WR (1995) Multiple origins of anural development in ascidians inferred from rDNA sequences. J Mol Evol 40:413–427PubMedGoogle Scholar
  114. Haeckel EH (1866) Generelle Morphologie der Organismen allgemeine Grundzuge der organischen Formen-Wissenschaft, mechanisch begründet durch die von Charles Darwin reformirte Descendenz-Theorie von Ernst Haeckel: allgemeine Entwickelungsgeschichte der Organismen, vol 2, Kritische Grundzuge der mechanischen Wissenschaft von den entstehenden Formen der Organismen, begründet durch die Descendenz-Theorie. Verlag von Georg Reimer, BerlinGoogle Scholar
  115. Haeckel EH (1869) Ueber Arbeitstheilung in Natur und Menschenleben. Lüderitz, BerlinGoogle Scholar
  116. Haeckel EH (1874) Anthropogenie oder Entwickelungsgeschichte des Menschen: gemeinverständliche wissenschaftliche Vorträge über die Grundzüge der menschlichen Keimes- und Stammes-Geschichte. Wilhelm Engelmann, LeipzigGoogle Scholar
  117. Halanych KM (2004) The new view of animal phylogeny. Annu Rev Ecol Evol Syst 35(1):229–256Google Scholar
  118. Haupaix N, Stolfi A, Sirour C, Picco V, Levine M, Christiaen L, Yasuo H (2013) p120RasGAP mediates ephrin/Eph-dependent attenuation of FGF/ERK signals during cell fate specification in ascidian embryos. Development 140:4347–4352PubMedCentralPubMedGoogle Scholar
  119. Haupaix N, Abitua PB, Sirour C, Yasuo H, Levine M, Hudson C (2014) Ephrin-mediated restriction of ERK1/2 activity delimits the number of pigment cells in the Ciona CNS. Dev Biol 394(1):170–180PubMedGoogle Scholar
  120. Helmkampf M, Bruchhaus I, Hausdorf B (2008) Phylogenomic analyses of lophophorates (brachiopods, phoronids and bryozoans) confirm the Lophotrochozoa concept. Proc R Soc B Biol Sci 275:1927–1933Google Scholar
  121. Heyland A, Hodin J (2004) Heterochronic developmental shift caused by thyroid hormone in larval sand dollars and its implications for phenotypic plasticity and the evolution of nonfeeding development. Evolution 58:524–538PubMedGoogle Scholar
  122. Hirano T, Nishida H (1997) Developmental fates of larval tissues after metamorphosis in ascidian Halocynthia roretzi. I. Origin of mesodermal tissues of the juvenile. Dev Biol 192(2):199–210PubMedGoogle Scholar
  123. Hirano T, Nishida H (2000) Developmental fates of larval tissues after metamorphosis in the ascidian, Halocynthia roretzi. II. Origin of endodermal tissues of the juvenile. Dev Genes Evol 210(2):55–63PubMedGoogle Scholar
  124. Hirose E, Hirose M (2007) Morphological process of vertical transmission of photosymbionts in the colonial ascidian Trididemnum miniatum Kott, 1977. Mar Biol 150:359–367Google Scholar
  125. Hiruta J, Mazet F, Yasui K, Zhang P, Ogasawara M (2005) Comparative expression analysis of transcription factor genes in the endostyle of invertebrate chordates. Dev Dyn 233:1031–1037PubMedGoogle Scholar
  126. Holzer G, Laudet V (2013) Thyroid hormones and postembryonic development in amniotes. Curr Top Dev Biol 103:397–425PubMedGoogle Scholar
  127. Horie T, Sakurai D, Ohtsuki H, Terakita A, Shichida Y, Usukura J, Kusakabe T, Tsuda M (2008) Pigmented and nonpigmented ocelli in the brain vesicle of the ascidian larva. J Comp Neurol 509:88–102PubMedGoogle Scholar
  128. Horie T, Nakagawa M, Sasakura Y, Kusakabe TG, Tsuda M (2010) Simple motor system of the ascidian larva: neuronal complex comprising putative cholinergic and GABAergic/glycinergic neurons. Zool Sci 27:181–190PubMedGoogle Scholar
  129. Horie T, Shinki R, Ogura Y, Kusakabe TG, Satoh N, Sasakura Y (2011) Ependymal cells of chordate larvae are stem-like cells that form the adult nervous system. Nature 469:525–528PubMedGoogle Scholar
  130. Hosp J, Sagane Y, Danks G, Thompson EM (2012) The evolving proteome of a complex extracellular matrix, the Oikopleura house. PLoS One 7:e40172PubMedCentralPubMedGoogle Scholar
  131. Hotta K, Takahashi H, Erives A, Levine M, Satoh N (1999) Temporal expression patterns of 39 Brachyury-downstream genes associated with notochord formation in the Ciona intestinalis embryo. Dev Growth Differ 41:657–664Google Scholar
  132. Hotta K, Mitsuhara K, Takahashi H, Inaba K, Oka K, Gojobori T, Ikeo K (2007) A web-based interactive developmental table for the ascidian Ciona intestinalis, including 3D real-image embryo reconstructions: I. From fertilized egg to hatching larva. Dev Dyn 236:1790–1805PubMedGoogle Scholar
  133. Huber JL, da Silva KB, Bates WR, Swalla BJ (2000) The evolution of anural larvae in molgulid ascidians. Semin Cell Dev Biol 11(6):419–426PubMedGoogle Scholar
  134. Hudson C, Lemaire P (2001) Induction of anterior neural fates in the ascidian Ciona intestinalis. Mech Dev 100:189–203PubMedGoogle Scholar
  135. Hudson C, Yasuo H (2006) A signalling relay involving nodal and delta ligands acts during secondary notochord induction in Ciona embryos. Development 133:2855–2864PubMedGoogle Scholar
  136. Hudson C, Yasuo H (2008) Similarity and diversity in mechanisms of muscle fate induction between ascidian species. Biol Cell 100:265–277PubMedGoogle Scholar
  137. Hudson C, Lotito S, Yasuo H (2007) Sequential and combinatorial inputs from Nodal, Delta2/Notch and FGF/MEK/ERK signalling pathways establish a grid-like organisation of distinct cell identities in the ascidian neural plate. Development 134:3527–3537PubMedGoogle Scholar
  138. Hudson C, Ba M, Rouvière C, Yasuo H (2011) Divergent mechanisms specify chordate motoneurons: evidence from ascidians. Development 138:1643–1652PubMedGoogle Scholar
  139. Hudson C, Kawai N, Negishi T, Yasuo H (2013) β-catenin-driven binary fate specification segregates germ layers in ascidian embryos. Curr Biol 23:491–495PubMedGoogle Scholar
  140. Huxley TH (1851) Observations upon the anatomy and physiology of Salpa and Pyrosoma. Philos Trans R Soc Lond 141:567–593Google Scholar
  141. Hyman L (1959) The invertebrates: smaller coelomate groups, Chaetognatha, Hemichordata, Pogonophora, Phoronida, Ectoprocta, Brachiopoda, Sipunculida, the coelomate Bilateria, vol V. McGraw-Hill Book Company, New YorkGoogle Scholar
  142. Ikuta T (2011) Evolution of invertebrate deuterostomes and Hox/ParaHox genes. Genomics Proteomics Bioinforma 9:77–96Google Scholar
  143. Ikuta T, Saiga H (2007) Dynamic change in the expression of developmental genes in the ascidian central nervous system: revisit to the tripartite model and the origin of the midbrain–hindbrain boundary region. Dev Biol 312:631–643PubMedGoogle Scholar
  144. Ikuta T, Yoshida N, Satoh N, Saiga H (2004) Ciona intestinalis Hox gene cluster: its dispersed structure and residual colinear expression in development. Proc Natl Acad Sci U S A 101:15118–15123PubMedCentralPubMedGoogle Scholar
  145. Ikuta T, Satoh N, Saiga H (2010) Limited functions of Hox genes in the larval development of the ascidian Ciona intestinalis. Development 137:1505–1513PubMedGoogle Scholar
  146. Imai JH, Meinertzhagen IA (2007a) Neurons of the ascidian larval nervous system in Ciona intestinalis: I. Central nervous system. J Comp Neurol 501:316–334PubMedGoogle Scholar
  147. Imai JH, Meinertzhagen IA (2007b) Neurons of the ascidian larval nervous system in Ciona intestinalis: II. Peripheral nervous system. J Comp Neurol 501:335–352PubMedGoogle Scholar
  148. Imai K, Takada N, Satoh N, Satou Y (2000) (beta)-catenin mediates the specification of endoderm cells in ascidian embryos. Development 127:3009–3020PubMedGoogle Scholar
  149. Imai KS, Satoh N, Satou Y (2002a) Early embryonic expression of FGF4/6/9 gene and its role in the induction of mesenchyme and notochord in Ciona savignyi embryos. Development 129:1729–1738PubMedGoogle Scholar
  150. Imai KS, Satoh N, Satou Y (2002b) An essential role of a FoxD gene in notochord induction in Ciona embryos. Development 129:3441–3453PubMedGoogle Scholar
  151. Imai K, Satoh N, Satou Y (2003) A Twist-like bHLH gene is a downstream factor of an endogenous FGF and determines mesenchymal fate in the ascidian embryos. Development 130:4461–4472PubMedGoogle Scholar
  152. Imai KS, Hino K, Yagi K, Satoh N, Satou Y (2004) Gene expression profiles of transcription factors and signaling molecules in the ascidian embryo: towards a comprehensive understanding of gene networks. Development 131:4047–4058PubMedGoogle Scholar
  153. Imai KS, Levine M, Satoh N, Satou Y (2006) Regulatory blueprint for a chordate embryo. Science 312:1183PubMedGoogle Scholar
  154. Imai KS, Stolfi A, Levine M, Satou Y (2009) Gene regulatory networks underlying the compartmentalization of the Ciona central nervous system. Development 136:285PubMedGoogle Scholar
  155. Izzi SA, Colantuono BJ, Sullivan K, Khare P, Meedel TH (2013) Functional studies of the Ciona intestinalis myogenic regulatory factor reveal conserved features of chordate myogenesis. Dev Biol 376:213–223PubMedCentralPubMedGoogle Scholar
  156. Jacobs MW, Degnan BM, Bishop JD, Strathmann RR (2008) Early activation of adult organ differentiation during delay of metamorphosis in solitary ascidians, and consequences for juvenile growth. Invertebr Biol 127:217–236Google Scholar
  157. Jeffery WR (2014) Closing the wounds: one hundred and twenty five years of regenerative biology in the ascidian Ciona intestinalis. Genesis 00:1–18Google Scholar
  158. Jeffery WR, Swalla BJ (1992) Evolution of alternate modes of development in ascidians. Bioessays 14:219–226PubMedGoogle Scholar
  159. Jeffery WR, Swalla BJ, Ewing N, Kusakabe T (1999) Evolution of the ascidian anural larva: evidence from embryos and molecules. Mol Biol Evol 16:646–654PubMedGoogle Scholar
  160. Jeffery WR, Strickler AG, Yamamoto Y (2004) Migratory neural crest-like cells form body pigmentation in a urochordate embryo. Nature 431:696–699PubMedGoogle Scholar
  161. Jeffery WR, Chiba T, Krajka FR, Deyts C, Satoh N, Joly J-S (2008) Trunk lateral cells are neural crest-like cells in the ascidian Ciona intestinalis: insights into the ancestry and evolution of the neural crest. Dev Biol 324:152–160PubMedGoogle Scholar
  162. Jiang D, Smith WC (2007) Ascidian notochord morphogenesis. Dev Dyn 236:1748–1757PubMedCentralPubMedGoogle Scholar
  163. Jiang D, Munro EM, Smith WC (2005) Ascidian prickle regulates both mediolateral and anterior-posterior cell polarity of notochord cells. Curr Biol 15:79–85PubMedGoogle Scholar
  164. Johnson DS, Davidson B, Brown CD, Smith WC, Sidow A (2004) Noncoding regulatory sequences of Ciona exhibit strong correspondence between evolutionary constraint and functional importance. Genome Res 14:2448–2456PubMedCentralPubMedGoogle Scholar
  165. Johnson DS, Zhou Q, Yagi K, Satoh N, Wong W, Sidow A (2005) De novo discovery of a tissue-specific gene regulatory module in a chordate. Genome Res 15:1315–1324PubMedCentralPubMedGoogle Scholar
  166. Julin C (1912) Recherches sur le développement embryonnaire de Pyrosoma giganteum. Zool Jahrb Suppl 15:775–863Google Scholar
  167. Katikala L, Aihara H, Passamaneck YJ, Gazdoiu S, José-Edwards DS, Kugler JE, Oda-Ishii I, Imai JH, Nibu Y, Di Gregorio A (2013) Functional brachyury binding sites establish a temporal read-out of gene expression in the Ciona notochord. PLoS Biol 11:e1001697PubMedCentralPubMedGoogle Scholar
  168. Kawamura K, Fujiwara S (1995) Establishment of cell lines from multipotent epithelial sheet in the budding tunicate, Polyandrocarpa misakiensis. Cell Struct Funct 20:97–106PubMedGoogle Scholar
  169. Kawamura K, Sugino Y, Sunanaga T, Fujiwara S (2008) Multipotent epithelial cells in the process of regeneration and asexual reproduction in colonial tunicates. Develop Growth Differ 50:1–11Google Scholar
  170. Kim GJ, Nishida H (2001) Role of the FGF and MEK signaling pathway in the ascidian embryo. Develop Growth Differ 43:521–533Google Scholar
  171. Kimura Y, Yoshida M, Morisawa M (2003) Interaction between noradrenaline or adrenaline and the β1-adrenergic receptor in the nervous system triggers early metamorphosis of larvae in the ascidian, Ciona savignyi. Dev Biol 258:129–140Google Scholar
  172. Kluge B, Renault N, Rohr KB (2005) Anatomical and molecular reinvestigation of lamprey endostyle development provides new insight into thyroid gland evolution. Dev Genes Evol 215(1):32–40PubMedGoogle Scholar
  173. Kott P (2001) The Australian Ascidiacea part 4, Aplousobranchia (3), Didemnidae. Mem Queensland Mus 47:1–408Google Scholar
  174. Kourakis MJ, Smith WC (2007) A conserved role for FGF signaling in chordate otic/atrial placode formation. Dev Biol 312:245–257PubMedCentralPubMedGoogle Scholar
  175. Kowalevsky A (1874) Ueber die knospung der Ascidien. Arch Mikrosk Anat 10:441–470Google Scholar
  176. Kowalewski AO (1866) Entwicklungsgeschichte der einfachen Ascidien. In: mémoires de L’Académie Impériale des Sciences de St.-Pétersbourg, vol. 10. St. Petersburg: commissionäre der Kaiserlichen Akademie der WissenschaftenGoogle Scholar
  177. Kozloff EN (1990) Invertebrates. Saunders College Pub, Philadelphia, p 866Google Scholar
  178. Krieg M, Arboleda-Estudillo Y, Puech P-H, Käfer J, Graner F, Müller D, Heisenberg C-P (2008) Tensile forces govern germ-layer organization in zebrafish. Nat Cell Biol 10:429–436PubMedGoogle Scholar
  179. Kugler JE, Kerner P, Bouquet J-M, Jiang D, Di Gregorio A (2011) Evolutionary changes in the notochord genetic toolkit: a comparative analysis of notochord genes in the ascidian Ciona and the larvacean Oikopleura. BMC Evol Biol 11:21PubMedCentralPubMedGoogle Scholar
  180. Kühl M, Behrendt L, Trampe E, Qvortrup K, Schreiber U, Borisov SM, Larkum AWD (2012) Microenvironmental ecology of the chlorophyll b-containing symbiotic Cyanobacterium Prochloron in the didemnid ascidian Lissoclinum patella. Front Microbiol 3:402PubMedCentralPubMedGoogle Scholar
  181. Kumano G, Nishida H (2009) Patterning of an ascidian embryo along the anterior–posterior axis through spatial regulation of competence and induction ability by maternally localized PEM. Dev Biol 331:78–88PubMedGoogle Scholar
  182. Kumano G, Yamaguchi S, Nishida H (2006) Overlapping expression of FoxA and Zic confers responsiveness to FGF signaling to specify notochord in ascidian embryos. Dev Biol 300:770–784PubMedGoogle Scholar
  183. Kumano G, Takatori N, Negishi T, Takada T, Nishida H (2011) A maternal factor unique to ascidians silences the germline via binding to P-TEFb and RNAP II regulation. Curr Biol 21:1308–1313PubMedGoogle Scholar
  184. Kürn U, Rendulic S, Tiozzo S, Lauzon RJ (2011) Asexual propagation and regeneration in colonial ascidians. Biol Bull 221:43–61PubMedGoogle Scholar
  185. Kusakabe T, Swalla BJ, Satoh N, Jeffery WR (1996) Mechanism of an evolutionary change in muscle cell differentiation in ascidians with different modes of development. Dev Biol 174:379–392PubMedGoogle Scholar
  186. Kusakabe T, Yoshida R, Kawakami I, Kusakabe R, Mochizuki Y, Yamada L, Shin-i T, Kohara Y, Satoh N, Tsuda M (2002) Gene expression profiles in tadpole larvae of Ciona intestinalis. Dev Biol 242:188–203PubMedGoogle Scholar
  187. Laird DJ, Weissman IL (2004) Telomerase maintained in self-renewing tissues during serial regeneration of the urochordate Botryllus schlosseri. Dev Biol 273:185–194PubMedGoogle Scholar
  188. Laird DJ, De Tomaso AW, Weissman IL (2005) Stem cells are units of natural selection in a colonial ascidian. Cell 123:1351–1360PubMedGoogle Scholar
  189. Lamarck JB (1816) Histoire Naturelle Des Animaux Sans Vertèbres. Verdière, ParisGoogle Scholar
  190. Lankester ER (1877) Memoirs: notes on the embryology and classification of the animal kingdom: comprising a revision of speculations relative to the origin and significance of the germ-layers. Q J Microsc Sci 2:399–454Google Scholar
  191. Lemaire P (2009) Unfolding a chordate developmental program, one cell at a time: invariant cell lineages, short-range inductions and evolutionary plasticity in ascidians. Dev Biol 332:48–60PubMedGoogle Scholar
  192. Lemaire P (2011) Evolutionary crossroads in developmental biology: the tunicates. Development 138(11):2143–2152PubMedGoogle Scholar
  193. Marino R, Melillo D, Di Fillippo M, Yamada A, Pinto M, De Santis R, Brown ER, Matassi G (2007) Ammonium channel expression is essential for brain development and function in the larva of Ciona intestinalis. J Comp Neurol 503:135–147PubMedGoogle Scholar
  194. Matthysse AG, Deschet K, Williams M, Marry M, White AR, Smith WC (2004) A functional cellulose synthase from ascidian epidermis. Proc Natl Acad Sci U S A 101:986–991PubMedCentralPubMedGoogle Scholar
  195. Mazet F, Hutt JA, Milloz J, Millard J, Graham A, Shimeld SM (2005) Molecular evidence from Ciona intestinalis for the evolutionary origin of vertebrate sensory placodes. Dev Biol 282:494–508PubMedGoogle Scholar
  196. Meedel TH, Farmer SC, Lee JJ (1997) The single MyoD family gene of Ciona intestinalis encodes two differentially expressed proteins: implications for the evolution of chordate muscle gene regulation. Development 124:1711–1721PubMedGoogle Scholar
  197. Meedel TH, Lee JJ, Whittaker J (2002) Muscle development and lineage-specific expression of CiMDF, the MyoD family gene of Ciona intestinalis. Dev Biol 241:238–246PubMedGoogle Scholar
  198. Meedel TH, Chang P, Yasuo H (2007) Muscle development in Ciona intestinalis requires the b-HLH myogenic regulatory factor gene Ci-MRF. Dev Biol 302:333–344PubMedCentralPubMedGoogle Scholar
  199. Millar R (1954) The breeding and development of the ascidian Pelonaia corrugata Forbes and Goodsir. J Mar Biol Assoc U K 33:681–687Google Scholar
  200. Millar R (1962) The breeding and development of the ascidian Polycarpa tinctor. Q J Microsc Sci 3:399–403Google Scholar
  201. Millar RH (1971) The biology of ascidians. Adv Mar Biol 9:1–100. doi: 10.1016/S0065-2881(08)60341-7, ElsevierGoogle Scholar
  202. Milne-Edwards H (1841) Observations sur les ascidies composées des côtes de la Manche. Chez Fortin-Masson et Cie, ParisGoogle Scholar
  203. Milne-Edwards H (1843) Élémens de Zoologie, Ou, Leçons Sur L’anatomie, La Physiologie, La Classification et Les Moeurs Des Animaux. Fortin Masson, ParisGoogle Scholar
  204. Minokawa T, Yagi K, Makabe KW, Nishida H (2001) Binary specification of nerve cord and notochord cell fates in ascidian embryos. Development 128:2007–2017PubMedGoogle Scholar
  205. Mochizuki Y, Satou Y, Satoh N (2003) Large‐scale characterization of genes specific to the larval nervous system in the ascidian Ciona intestinalis. Genesis 36:62–71PubMedGoogle Scholar
  206. Mukai H, Koyama H, Watanabe H (1983) Studies on the reproduction of three species of Perophora (Ascidiacea). Biol Bull 164:251–266Google Scholar
  207. Nakashima K, Yamada L, Satou Y, Azuma J, Satoh N (2004) The evolutionary origin of animal cellulose synthase. Dev Genes Evol 214:81–88PubMedGoogle Scholar
  208. Nakauchi M (1982) Asexual development of ascidians: its biological significance, diversity, and morphogenesis. Am Zool 22:753–763Google Scholar
  209. Nakauchi M (1986) Oozooid development and budding in the polyclinid ascidian, Parascidia flemingii (Urochordata). J Zool 208:255–267Google Scholar
  210. Nakayama A, Satou Y, Satoh N (2001) Isolation and characterization of genes that are expressed during Ciona intestinalis metamorphosis. Dev Genes Evol 211:184–189PubMedGoogle Scholar
  211. Nakayama-Ishimura A, Chambon J-p, Horie T, Satoh N, Sasakura Y (2009) Delineating metamorphic pathways in the ascidian Ciona intestinalis. Dev Biol 326:357–367PubMedGoogle Scholar
  212. Nakazawa K, Yamazawa T, Moriyama Y, Ogura Y, Kawai N, Sasakura Y, Saiga H (2013) Formation of the digestive tract in Ciona intestinalis includes two distinct morphogenic processes between its anterior and posterior parts. Dev Dyn 242:1172–1183PubMedGoogle Scholar
  213. Negishi T, Takada T, Kawai N, Nishida H (2007) Localized PEM mRNA and protein are involved in cleavage-plane orientation and unequal cell divisions in ascidians. Curr Biol 17:1014–1025PubMedGoogle Scholar
  214. Nicol D, Meinertzhagen I (1988a) Development of the central nervous system of the larva of the ascidian, Ciona intestinalis L: I. The early lineages of the neural plate. Dev Biol 130:721–736PubMedGoogle Scholar
  215. Nicol D, Meinertzhagen I (1988b) Development of the central nervous system of the larva of the ascidian, Ciona intestinalis L: II. Neural plate morphogenesis and cell lineages during neurulation. Dev Biol 130:737–766PubMedGoogle Scholar
  216. Nielsen C (1995) Animal evolution: interrelationships of the living phyla. Oxford University Press, OxfordGoogle Scholar
  217. Nielsen C (2002) The phylogenetic position of entoprocta, ectoprocta, phoronida, and brachiopoda. Integr Comp Biol 42:685–691PubMedGoogle Scholar
  218. Nishida H (1987) Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme III. Up to the tissue restricted stage. Dev Biol 121:526–541PubMedGoogle Scholar
  219. Nishida H (1992) Regionality of egg cytoplasm that promotes muscle differentiation in embryo of the ascidian, Halocynthia roretzi. Development 116:521–529Google Scholar
  220. Nishida H (1993) Localized regions of egg cytoplasm that promote expression of endoderm-specific alkaline phosphatase in embryos of the ascidian Halocynthia roretzi. Development 118:1–7Google Scholar
  221. Nishida H (1994a) Localization of determinants for formation of the anterior-posterior axis in eggs of the ascidian Halocynthia roretzi. Development 120:3093–3104Google Scholar
  222. Nishida H (1994b) Localization of egg cytoplasm that promotes differentiation to epidermis in embryos of the ascidian Halocynthia roretzi. Development 120:235–243Google Scholar
  223. Nishida H (1996) Vegetal egg cytoplasm promotes gastrulation and is responsible for specification of vegetal blastomeres in embryos of the ascidian Halocynthia roretzi. Development 122:1271–1279PubMedGoogle Scholar
  224. Nishida N (2008) Development of the appendicularian Oikopleura dioica: culture, genome, and cell lineages. Dev Growth Differ 50:S239–S256PubMedGoogle Scholar
  225. Nishida H, Sawada K (2001) macho-1 encodes a localized mRNA in ascidian eggs that specifies muscle fate during embryogenesis. Nature 409:724–729PubMedGoogle Scholar
  226. Nishikawa T (1991) The ascidians of the Japan sea. II. Publ Seto Mar Biol Lab 35:25–170Google Scholar
  227. Nishino A, Satou Y, Morisawa M, Satoh N (2000) Muscle actin genes and muscle cells in the appendicularian, Oikopleura longicauda: phylogenetic relationships among muscle tissues in the urochordates. J Exp Zool 288:135–150PubMedGoogle Scholar
  228. Nishino A, Satou Y, Morisawa M, Satoh N (2001) Brachyury (T) gene expression and notochord development in Oikopleura longicauda (Appendicularia, Urochordata). Dev Genes Evol 211:219–231PubMedGoogle Scholar
  229. Nishino A, Okamura Y, Piscopo S, Brown ER (2010) A glycine receptor is involved in the organization of swimming movements in an invertebrate chordate. BMC Neurosci 11:6PubMedCentralPubMedGoogle Scholar
  230. Nishitsuji K, Horie T, Ichinose A, Sasakura Y, Yasuo H, Kusakabe TG (2012) Cell lineage and cis-regulation for a unique GABAergic/glycinergic neuron type in the larval nerve cord of the ascidian Ciona intestinalis. Develop Growth Differ 54:177–186Google Scholar
  231. Noda T, Satoh N (2008) A comprehensive survey of cadherin superfamily gene expression patterns in Ciona intestinalis. Gene Expr Patterns 8:349–356PubMedGoogle Scholar
  232. Oda-Ishii I, Bertrand V, Matsuo I, Lemaire P, Saiga H (2005) Making very similar embryos with divergent genomes: conservation of regulatory mechanisms of Otx between the ascidians Halocynthia roretzi and Ciona intestinalis. Development 132:1663–1674PubMedGoogle Scholar
  233. Ogasawara M, Di Lauro R, Satoh N (1999) Ascidian homologs of mammalian thyroid peroxidase genes are expressed in the thyroid-equivalent region of the endostyle. J Experimental Zool 285(2):158–169Google Scholar
  234. Ogasawara M, Shigetani Y, Suzuki S, Kuratani S, Satoh N (2001) Expression of thyroid transcription factor-1 (TTF-1) gene in the ventral forebrain and endostyle of the agnathan vertebrate, Lampetra japonica. Genesis 30(2):51–58PubMedGoogle Scholar
  235. Ogura Y, Sakaue-Sawano A, Nakagawa M, Satoh N, Miyawaki A, Sasakura Y (2011) Coordination of mitosis and morphogenesis: role of a prolonged G2 phase during chordate neurulation. Development 138:577–587PubMedGoogle Scholar
  236. Okuda Y, Ogura E, Kondoh H, Kamachi Y (2010) B1 SOX coordinate cell specification with patterning and morphogenesis in the early zebrafish embryo. PLoS Genet 6:e1000936PubMedCentralPubMedGoogle Scholar
  237. Paffenhöfer G-A, Köster M (2011) From one to many: on the life cycle of Dolioletta gegenbauri Uljanin (Tunicata, Thaliacea). J Plankton Res 33:1139–1145Google Scholar
  238. Pancer Z, Gershon H, Rinkevich B (1995) Coexistence and possible parasitism of somatic and germ cell lines in chimeras of the colonial urochordate Botryllus schlosseri. Biol Bull 189:106–112Google Scholar
  239. Paris M, Brunet F, Markov GV, Schubert M, Laudet V (2008) The amphioxus genome enlightens the evolution of the thyroid hormone signaling pathway. Dev Genes Evol 218:667–680PubMedGoogle Scholar
  240. Pasini A, Amiel A, Rothbächer U, Roure A, Lemaire P, Darras S (2006) Formation of the ascidian epidermal sensory neurons: insights into the origin of the chordate peripheral nervous system. PLoS Biol 4:e225PubMedCentralPubMedGoogle Scholar
  241. Pasini A, Manenti R, Rothbächer U, Lemaire P (2012) Antagonizing retinoic acid and FGF/MAPK pathways control posterior body patterning in the invertebrate chordate Ciona intestinalis. PLoS One 7:e46193PubMedCentralPubMedGoogle Scholar
  242. Pérez-Portela R, Bishop J, Davis AR, Turon X (2009) Phylogeny of the families Pyuridae and Styelidae (Stolidobranchiata, Ascidiacea) inferred from mitochondrial and nuclear DNA sequences. Mol Phylogenet Evol 50:560–570PubMedGoogle Scholar
  243. Perrier E (1898) Note sur la Classification des Tuniciers. CR Acad Sci Paris 124:1758–1762Google Scholar
  244. Picco V, Hudson C, Yasuo H (2007) Ephrin-Eph signalling drives the asymmetric division of notochord/neural precursors in Ciona embryos. Development 134:1491–1497PubMedGoogle Scholar
  245. Prodon F, Sardet C, Nishida H (2008) Cortical and cytoplasmic flows driven by actin microfilaments polarize the cortical ER-mRNA domain along the a–v axis in ascidian oocytes. Dev Biol 313:682–699PubMedGoogle Scholar
  246. Raff RA, Love AC (2004) Kowalevsky, comparative evolutionary embryology, and the intellectual lineage of evo‐devo. J Exp Zool B Mol Dev Evol 302:19–34PubMedGoogle Scholar
  247. Razy-Krajka F, Lam K, Wang W, Stolfi A, Joly M, Bonneau R, Christiaen L (2014) Collier/OLF/EBF-dependent transcriptional dynamics control pharyngeal muscle specification from primed cardiopharyngeal progenitors. Dev Cell 29:263–276PubMedCentralPubMedGoogle Scholar
  248. Rinkevich Y, Voskoboynik A, Rosner A, Rabinowitz C, Paz G, Oren M, Douek J, Alfassi G, Moiseeva E, Ishizuka KJ (2013) Repeated, long-term cycling of putative stem cells between niches in a basal chordate. Dev Cell 24:76–88PubMedGoogle Scholar
  249. Roberts B, Davidson B, MacMaster G, Lockhart V, Ma E, Wallace SS, Swalla BJ (2007) A complement response may activate metamorphosis in the ascidian Boltenia villosa. Dev Genes Evol 217:449–458PubMedGoogle Scholar
  250. Roegiers F, Djediat C, Dumollard R, Rouvière C, Sardet C (1999) Phases of cytoplasmic and cortical reorganizations of the ascidian zygote between fertilization and first division. Development 126:3101–3117PubMedGoogle Scholar
  251. Romer AS (1967) Major steps in vertebrate evolution. Science (New York, NY) 158(3809):1629–1637Google Scholar
  252. Rothbächer U, Bertrand V, Lamy C, Lemaire P (2007) A combinatorial code of maternal GATA, Ets and β-catenin-TCF transcription factors specifies and patterns the early ascidian ectoderm. Development 134:4023–4032PubMedGoogle Scholar
  253. Roure A, Lemaire P, Darras S (2014) An Otx/Nodal regulatory signature for posterior neural development in ascidians. PLoS Genet 10:e1004548PubMedCentralPubMedGoogle Scholar
  254. Sabbadin A, Zaniolo G, Majone F (1975) Determination of polarity and bilateral asymmetry in palleal and vascular buds of the ascidian Botryllus schlosseri. Dev Biol 46:79–87PubMedGoogle Scholar
  255. Saito M, Seki M, Amemiya S, Yamasu K, Suyemitsu T, Ishihara K (1998) Induction of metamorphosis in the sand dollar Peronella japonica by thyroid hormones. Develop Growth Differ 40:307–312Google Scholar
  256. Sander K, Fischer J-L (1992) How to dart ascidian blastomeres: the embryological micro-tools of Laurent Chabry (1855–1893). Dev Genes Evol 201:191–193Google Scholar
  257. Sardet C, Speksnijder J, Inoue S, Jaffe L (1989) Fertilization and ooplasmic movements in the ascidian egg. Development 105:237–249PubMedGoogle Scholar
  258. Sardet C, Nishida H, Prodon F, Sawada K (2003) Maternal mRNAs of PEM and macho 1, the ascidian muscle determinant, associate and move with a rough endoplasmic reticulum network in the egg cortex. Development 130:5839–5849PubMedGoogle Scholar
  259. Sardet C, Paix A, Prodon F, Dru P, Chenevert J (2007) From oocyte to 16‐cell stage: cytoplasmic and cortical reorganizations that pattern the ascidian embryo. Dev Dyn 236:1716–1731PubMedGoogle Scholar
  260. Sasaki A, Miyamoto Y, Satou Y, Satoh N, Ogasawara M (2003) Novel endostyle-specific genes in the ascidian Ciona intestinalis. Zool Sci 20:1025–1030PubMedGoogle Scholar
  261. Sasakura Y, Nakashima K, Awazu S, Matsuoka T, Nakayama A, Azuma J, Satoh N (2005) Transposon-mediated insertional mutagenesis revealed the functions of animal cellulose synthase in the ascidian Ciona intestinalis. Proc Natl Acad Sci U S A 102:15134PubMedCentralPubMedGoogle Scholar
  262. Sasakura Y, Kanda M, Ikeda T, Horie T, Kawai N, Ogura Y, Yoshida R, Hozumi A, Satoh N, Fujiwara S (2012) Retinoic acid-driven Hox1 is required in the epidermis for forming the otic/atrial placodes during ascidian metamorphosis. Development 139:2156–2160PubMedGoogle Scholar
  263. Satoh N (2013) Developmental genomics of ascidians. Wiley-Blackwell, Hoboken, p 216Google Scholar
  264. Satou Y (1999) posterior end mark 3 (pem-3), an ascidian maternally expressed gene with localized mRNA encodes a protein with Caenorhabditis elegans MEX-3-like KH domains. Dev Biol 212:337–350PubMedGoogle Scholar
  265. Satou Y, Satoh N (1997) posterior end mark 2 (pem-2), pem-4, pem-5, and pem-6: maternal genes with localized mRNA in the ascidian embryo. Dev Biol 192:467–481PubMedGoogle Scholar
  266. Satou Y, Takatori N, Yamada L, Mochizuki Y, Hamaguchi M, Ishikawa H, Chiba S, Imai K, Kano S, Murakami SD (2001) Gene expression profiles in Ciona intestinalis tailbud embryos. Development 128:2893–2904PubMedGoogle Scholar
  267. Satou Y, Takatori N, Fujiwara S, Nishikata T, Saiga H, Kusakabe T, Shin-i T, Kohara Y, Satoh N (2002) Ciona intestinalis cDNA projects: expressed sequence tag analyses and gene expression profiles during embryogenesis. Gene 287:83–96PubMedGoogle Scholar
  268. Satou Y, Kawashima T, Kohara Y, Satoh N (2003) Large scale EST analyses in Ciona intestinalis. Dev Genes Evol 213:314–318PubMedGoogle Scholar
  269. Satou Y, Imai KS, Satoh N (2004) The ascidian Mesp gene specifies heart precursor cells. Development 131:2533–2541PubMedGoogle Scholar
  270. Seo HC, Kube M, Edvardsen RB, Jensen MF, Beck A, Spriet E, Gorsky G, Thompson EM, Lehrach H, Reinhardt R (2001) Miniature genome in the marine chordate Oikopleura dioica. Science 294:2506PubMedGoogle Scholar
  271. Seo H, Edvardsen RB, Maeland AD, Bjordal M, Jensen MF, Hansen A, Flaat M, Weissenbach J, Lehrach H, Wincker P, Reinhardt R, Chourrout D (2004) Hox cluster disintegration with persistent anteroposterior order of expression in Oikopleura dioica. Nature 431:67–71PubMedGoogle Scholar
  272. Sherrard K, Robin F, Lemaire P, Munro E (2010) Sequential activation of apical and basolateral contractility drives ascidian endoderm invagination. Curr Biol 20:1499–1510PubMedCentralPubMedGoogle Scholar
  273. Shi W, Levine M (2008) Ephrin signaling establishes asymmetric cell fates in an endomesoderm lineage of the Ciona embryo. Development 135:931–940PubMedGoogle Scholar
  274. Shirae-Kurabayashi M, Nishikata T, Takamura K, Tanaka KJ, Nakamoto C, Nakamura A (2006) Dynamic redistribution of vasa homolog and exclusion of somatic cell determinants during germ cell specification in Ciona intestinalis. Development 133:2683–2693PubMedGoogle Scholar
  275. Small K, Brudno M, Hill M, Sidow A (2007) A haplome alignment and reference sequence of the highly polymorphic Ciona savignyi genome. Genome Biol 8:R41PubMedCentralPubMedGoogle Scholar
  276. Somorjai IM, Somorjai RL, Garcia-Fernàndez J, Escrivà H (2012) Vertebrate-like regeneration in the invertebrate chordate amphioxus. Proc Natl Acad Sci 109:517–522PubMedCentralPubMedGoogle Scholar
  277. Sorrentino M, Manni L, Lane N, Burighel P (2000) Evolution of cerebral vesicles and their sensory organs in an ascidian larva. Acta Zool 81:243–258Google Scholar
  278. Søviknes AM, Glover JC (2008) Continued growth and cell proliferation into adulthood in the notochord of the appendicularian Oikopleura dioica. Biol Bull 214:17–28PubMedGoogle Scholar
  279. Spada F, Steen H, Troedsson C, Kallesøe T, Spriet E, Mann M, Thompson EM (2001) Molecular patterning of the oikoplastic epithelium of the larvacean tunicate Oikopleura dioica. J Biol Chem 276:20624–20632PubMedGoogle Scholar
  280. Spagnuolo A, Ristoratore F, Di Gregorio A, Aniello F, Branno M, Di Lauro R (2003) Unusual number and genomic organization of Hox genes in the tunicate Ciona intestinalis. Gene 309:71–79PubMedGoogle Scholar
  281. Squarzoni P, Parveen F, Zanetti L, Ristoratore F, Spagnuolo A (2011) FGF/MAPK/Ets signaling renders pigment cell precursors competent to respond to Wnt signal by directly controlling Ci-Tcf transcription. Development 138:1421–1432PubMedGoogle Scholar
  282. Stach T, Winter J, Bouquet J-M, Chourrout D, Schnabel R (2008) Embryology of a planktonic tunicate reveals traces of sessility. Proc Natl Acad Sci 105:7229–7234PubMedCentralPubMedGoogle Scholar
  283. Stefaniak L, Zhang H, Gittenberger A, Smith K, Holsinger K, Lin S, Whitlatch RB (2012) Determining the native region of the putatively invasive ascidian Didemnum vexillum Kott, 2002. J Exp Mar Biol Ecol 422:64–71Google Scholar
  284. Stolfi A, Christiaen L (2012) Genetic and genomic toolbox of the chordate Ciona intestinalis. Genetics 192:55–66PubMedCentralPubMedGoogle Scholar
  285. Stolfi A, Levine M (2011) Neuronal subtype specification in the spinal cord of a protovertebrate. Development 138:995–1004PubMedGoogle Scholar
  286. Stolfi A, Gainous TB, Young JJ, Mori A, Levine M, Christiaen L (2010) Early chordate origins of the vertebrate second heart field. Science 329:565PubMedGoogle Scholar
  287. Stolfi A, Wagner E, Taliaferro JM, Chou S, Levine M (2011) Neural tube patterning by Ephrin, FGF and Notch signaling relays. Development 138:5429–5439PubMedGoogle Scholar
  288. Stolfi A, Lowe EK, Racioppi C, Ristoratore F, Brown CT, Swalla BJ, Christiaen L (2014) Divergent mechanisms regulate conserved cardiopharyngeal development and gene expression in distantly related ascidians. eLife. doi: 10.7554/eLife.03728 PubMedGoogle Scholar
  289. Stoner DS, Weissman IL (1996) Somatic and germ cell parasitism in a colonial ascidian: possible role for a highly polymorphic allorecognition system. Proc Natl Acad Sci 93:15254–15259PubMedCentralPubMedGoogle Scholar
  290. Sugino YM, Matsumura M, Kawamura K (2007) Body muscle-cell differentiation from coelomic stem cells in colonial tunicates. Zool Sci 24:542–546PubMedGoogle Scholar
  291. Sutton MF (1960) The sexual development of Salpa fusiformis (Cuvier) Part I. J Embryol Exp Morpholog 8:268–290Google Scholar
  292. Swalla B (2006) Building divergent body plans with similar genetic pathways. Heredity 97:235–243PubMedGoogle Scholar
  293. Swalla BJ, Jeffery WR (1990) Interspecific hybridization between an anural and urodele ascidian: differential expression of urodele features suggests multiple mechanisms control anural development. Dev Biol 142:319–334PubMedGoogle Scholar
  294. Swalla BJ, Jeffery WR (1992) Vestigial brain melanocyte development during embryogenesis of an anural ascidian. Develop Growth Differ 34:17–25Google Scholar
  295. Swalla BJ, Cameron CB, Corley LS, Garey JR (2000) Urochordates are monophyletic within the deuterostomes. Syst Biol 49:52–64PubMedGoogle Scholar
  296. Tagawa K, Jeffery WR, Satoh N (1997) The recently-described ascidian species Molgula tectiformis is a direct developer. Zool Sci 14:297–303PubMedGoogle Scholar
  297. Takahashi H, Mitani Y, Satoh G, Satoh N (1999) Evolutionary alterations of the minimal promoter for notochord-specific Brachyury expression in ascidian embryos. Development 126:3725–3734PubMedGoogle Scholar
  298. Takamura K, Fujimura M, Yamaguchi Y (2002) Primordial germ cells originate from the endodermal strand cells in the ascidian Ciona intestinalis. Dev Genes Evol 212:11–18PubMedGoogle Scholar
  299. Takatori N, Kumano G, Saiga H, Nishida H (2010) Segregation of germ layer fates by nuclear migration-dependent localization of Not mRNA. Dev Cell 19:589–598PubMedGoogle Scholar
  300. Tang WJ, Chen JS, Zeller RW (2013) Transcriptional regulation of the peripheral nervous system in Ciona intestinalis. Dev Biol 378:183–193Google Scholar
  301. Tarallo R, Sordino P (2004) Time course of programmed cell death in Ciona intestinalis in relation to mitotic activity and MAPK signaling. Dev Dyn 230:251–262PubMedGoogle Scholar
  302. Tassy O, Dauga D, Daian F, Sobral D, Robin F, Khoueiry P, Salgado D, Fox V, Caillol D, Schiappa R (2010) The ANISEED database: digital representation, formalization, and elucidation of a chordate developmental program. Genome Res 20:1459–1468PubMedCentralPubMedGoogle Scholar
  303. Tatián M, Lagger C, Demarchi M, Mattoni C (2011) Molecular phylogeny endorses the relationship between carnivorous and filter‐feeding tunicates (Tunicata, Ascidiacea). Zool Scr 40:603–612Google Scholar
  304. Telford MJ, Copley RR (2011) Improving animal phylogenies with genomic data. Trends Genet 27:186–195PubMedGoogle Scholar
  305. Terakubo HQ, Nakajima Y, Sasakura Y, Horie T, Konno A, Takahashi H, Inaba K, Hotta K, Oka K (2010) Network structure of projections extending from peripheral neurons in the tunic of ascidian larva. Dev Dyn 239:2278–2287PubMedGoogle Scholar
  306. Thompson EM, Kallesøe T, Spada F (2001) Diverse genes expressed in distinct regions of the trunk epithelium define a monolayer cellular template for construction of the oikopleurid house. Dev Biol 238:260–273PubMedGoogle Scholar
  307. Tiozzo S, Christiaen L, Deyts C, Manni L, Joly JS, Burighel P (2005) Embryonic versus blastogenetic development in the compound ascidian Botryllus schlosseri: insights from Pitx expression patterns. Dev Dyn 232:468–478PubMedGoogle Scholar
  308. Tiozzo S, Brown FD, De Tomaso AW (2008) Regeneration and stem cells in ascidians. In: Bosch TCG (ed) Stem cells from hydra to man. Springer, Dordrecht, pp 95–112Google Scholar
  309. Todaro F (1880) Sui primi fenomeni dello sviluppo delle Salpe. Atti R Accad Lincei 3 Trans 4(3):86–89Google Scholar
  310. Tokuoka M, Satoh N, Satou Y (2005) A bHLH transcription factor gene, Twist-like1, is essential for the formation of mesodermal tissues of Ciona juveniles. Dev Biol 288:387–396PubMedGoogle Scholar
  311. Tokuoka M, Kumano G, Nishida H (2007) FGF9/16/20 and Wnt-5α signals are involved in specification of secondary muscle fate in embryos of the ascidian, Halocynthia roretzi. Dev Genes Evol 217:515–527PubMedGoogle Scholar
  312. Tolkin T, Christiaen L (2012) Development and evolution of the ascidian cardiogenic mesoderm. Curr Top Dev Biol 100:107PubMedGoogle Scholar
  313. Treen N, Yoshida K, Sakuma T, Sasaki H, Kawai N, Yamamoto T, Sasakura Y (2014) Tissue-specific and ubiquitous gene knockouts by TALEN electroporation provide new approaches to investigating gene function in Ciona. Development 141:481–487PubMedGoogle Scholar
  314. True JR, Haag ES (2001) Developmental system drift and flexibility in evolutionary trajectories. Evol Dev 3:109–119PubMedGoogle Scholar
  315. Tsagkogeorga G, Turon X, Hopcroft RR, Tilak M-K, Feldstein T, Shenkar N, Loya Y, Huchon D, Douzery EJ, Delsuc F (2009) An updated 18S rRNA phylogeny of tunicates based on mixture and secondary structure models. BMC Evol Biol 9:187PubMedCentralPubMedGoogle Scholar
  316. Tsagkogeorga G, Cahais V, Galtier N (2012) The population genomics of a fast evolver: high levels of diversity, functional constraint, and molecular adaptation in the tunicate Ciona intestinalis. Genome Biol Evol 4:852–861PubMedCentralGoogle Scholar
  317. Tsuda M, Sakurai D, Goda M (2003) Direct evidence for the role of pigment cells in the brain of ascidian larvae by laser ablation. J Exp Biol 206:1409–1417PubMedGoogle Scholar
  318. Tzahor E, Evans SM (2011) Pharyngeal mesoderm development during embryogenesis: implications for both heart and head myogenesis. Cardiovasc Res 91:196–202PubMedCentralPubMedGoogle Scholar
  319. Ueda N, Degnan SM (2013) Nitric oxide acts as a positive regulator to induce metamorphosis of the ascidian Herdmania momus. PLoS One 8:e72797PubMedCentralPubMedGoogle Scholar
  320. Veeman MT, Nakatani Y, Hendrickson C, Ericson V, Lin C, Smith WC (2008) Chongmague reveals an essential role for laminin-mediated boundary formation in chordate convergence and extension movements. Development 135:33–41PubMedCentralPubMedGoogle Scholar
  321. Veeman MT, Newman-Smith E, El-Nachef D, Smith WC (2010) The ascidian mouth opening is derived from the anterior neuropore: reassessing the mouth/neural tube relationship in chordate evolution. Dev Biol 344:138–149PubMedGoogle Scholar
  322. Vinson JP, Jaffe DB, O'Neill K, Karlsson EK, Stange-Thomann N, Anderson S, Mesirov JP, Satoh N, Satou Y, Nusbaum C (2005) Assembly of polymorphic genomes: algorithms and application to Ciona savignyi. Genome Res 15:1127–1135PubMedCentralPubMedGoogle Scholar
  323. Voskoboynik A, Soen Y, Rinkevich Y, Rosner A, Ueno H, Reshef R, Ishizuka KJ, Palmeri KJ, Moiseeva E, Rinkevich B (2008) Identification of the endostyle as a stem cell niche in a colonial chordate. Cell Stem Cell 3:456–464PubMedCentralPubMedGoogle Scholar
  324. Voskoboynik A, Neff NF, Sahoo D, Newman aM, Pushkarev D, Koh W, Quake SR (2013) The genome sequence of the colonial chordate, Botryllus schlosseri. eLife 2:e00569–e00569PubMedGoogle Scholar
  325. Wada H (1998) Evolutionary history of free-swimming and sessile lifestyles in urochordates as deduced from 18S rDNA molecular phylogeny. Mol Biol Evol 15:1189–1194PubMedGoogle Scholar
  326. Wada H (2001) Origin and evolution of the neural crest: a hypothetical reconstruction of its evolutionary history. Develop Growth Differ 43:509–520Google Scholar
  327. Wada S, Saiga H (2002) HrzicN, a new Zic family gene of ascidians, plays essential roles in the neural tube and notochord development. Development 129:5597–5608PubMedGoogle Scholar
  328. Wada H, Holland PWH, Sato S, Yamamoto H, Satoh N (1997) Neural tube is partially dorsalized by overexpression of HrPax-37: the ascidian homologue of Pax-3 and Pax-7. Dev Biol 187:240–252PubMedGoogle Scholar
  329. Wada H, Saiga H, Satoh N, Holland P (1998) Tripartite organization of the ancestral chordate brain and the antiquity of placodes: insights from ascidian Pax-2/5/8, Hox and Otx genes. Development 125:1113–1122Google Scholar
  330. Wagner E, Levine M (2012) FGF signaling establishes the anterior border of the Ciona neural tube. Development 139:2351–2359PubMedGoogle Scholar
  331. Wagner E, Stolfi A, Choi YG, Levine M (2014) Islet is a key determinant of ascidian palp morphogenesis. Development 141:3084–3092PubMedCentralPubMedGoogle Scholar
  332. Wang W, Razy-Krajka F, Siu E, Ketcham A, Christiaen L (2013) NK4 antagonizes Tbx1/10 to promote cardiac versus pharyngeal muscle fate in the ascidian second heart field. PLoS Biol 11:e1001725PubMedCentralPubMedGoogle Scholar
  333. Whittaker J (1973) Segregation during ascidian embryogenesis of egg cytoplasmic information for tissue-specific enzyme development. Proc Natl Acad Sci 70:2096–2100PubMedCentralPubMedGoogle Scholar
  334. Whittaker J (1977) Segregation during cleavage of a factor determining endodermal alkaline phosphatase development in ascidian embryos. J Exp Zool 202:139–153PubMedGoogle Scholar
  335. Whittaker J (1982) Muscle lineage cytoplasm can change the developmental expression in epidermal lineage cells of ascidian embryos. Dev Biol 93:463–470PubMedGoogle Scholar
  336. Wicht H, Lacalli TC (2005) The nervous system of amphioxus: structure, development, and evolutionary significance. Can J Zool 83:122–150Google Scholar
  337. Willey A (1894) Amphioxus and the ancestry of the vertebrates. Macmillan, New York, p 316Google Scholar
  338. Winchell CJ, Sullivan J, Cameron CB, Swalla BJ, Mallatt J (2002) Evaluating hypotheses of deuterostome phylogeny and chordate evolution with new LSU and SSU ribosomal DNA data. Mol Biol Evol 19:762–776PubMedGoogle Scholar
  339. Yagi K, Satou Y, Satoh N (2004) A zinc finger transcription factor, ZicL, is a direct activator of Brachyury in the notochord specification of Ciona intestinalis. Development 131:1279–1288PubMedGoogle Scholar
  340. Yagi K, Takatori N, Satou Y, Satoh N (2005) Ci-Tbx6b and Ci-Tbx6c are key mediators of the maternal effect gene Ci-macho1 in muscle cell differentiation in Ciona intestinalis embryos. Dev Biol 282:535–549PubMedGoogle Scholar
  341. Yasuo H, Hudson C (2007) FGF8/17/18 functions together with FGF9/16/20 during formation of the notochord in Ciona embryos. Dev Biol 302:92–103PubMedGoogle Scholar
  342. Yasuo H, Satoh N (1998) Conservation of the developmental role of Brachyury in notochord formation in a urochordate, the ascidian Halocynthia roretzi. Dev Biol 200:158–170PubMedGoogle Scholar
  343. Yokobori S, Kurabayashi A, Neilan BA, Maruyama T, Hirose E (2006) Multiple origins of the ascidian-Prochloron symbiosis: molecular phylogeny of photosymbiotic and non-symbiotic colonial ascidians inferred from 18S rDNA sequences. Mol Phylogenet Evol 40:8–19Google Scholar
  344. Yokoyama T, Hotta K, Oka K (2014) Comprehensive morphological analysis of individual peripheral neuron dendritic arbors in ascidian larvae using the photoconvertible protein kaede. Dev Dyn 243:1362–1373PubMedGoogle Scholar
  345. Young CM, Gowan RF, Dalby J, Pennachetti CA, Gagliardi D (1988) Distributional consequences of adhesive eggs and anural development in the ascidian Molgula pacifica (Huntsman, 1912). Biol Bull 174:39–46Google Scholar
  346. Zeng L, Swalla BJ (2005) Molecular phylogeny of the protochordates: chordate evolution. Can J Zool 83:24–33Google Scholar
  347. Zeng L, Jacobs MW, Swalla BJ (2006) Coloniality has evolved once in stolidobranch ascidians. Integr Comp Biol 46:255–268PubMedGoogle Scholar
  348. Zimmer R, Larwood G (1973) Living and fossil bryozoa. Academic, LawrenceGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  1. 1.Department of BiologyCenter for Developmental Genetics, New York UniversityNew YorkUSA
  2. 2.EvoDevo Laboratory, Departamento de ZoologiaInstituto de Biociências, Universidade de São PauloSão PauloBrazil
  3. 3.Evolutionary Developmental Biology Laboratory, Department of Biological SciencesUniversidad de los AndesBogotáColombia
  4. 4.Centro Nacional de Acuicultura e Investigaciones Marinas (CENAIM)Escuela Superior Politécnica del Litoral (ESPOL)San PedroEcuador

Personalised recommendations