Hemichordata is a group of exclusively marine animals, consisting of two subgroups, the sessile and small colonial pterobranchs and the solitary, vermiform enteropneusts (acorn worms) (Fig. 2.1; van der Horst 1939; Hyman 1959; Benito and Pardos 1997). With about 130 described species, Hemichordata comprises a relatively small taxon of benthic animals (; Cameron 2005). They are distributed worldwide and inhabit shallow coastal areas but are also found in the deep sea. For a long time, pterobranchs have been known only from deep waters, whereas enteropneusts were thought to burrow mainly in shallow waters. However, within the last five decades, about a dozen of different enteropneusts have been documented in the deep sea (Osborn et al. 2012). In contrast, pterobranchs have been found in intertidal zones of tropical waters only recently (Lester 1985) and might have been overlooked previously due to their minute size and superficial similarities in their gross morphology with other tube-dwelling animals, such as polychaetes and bryozoans.


Nerve Cord Ventral Nerve Cord Apical Organ Ciliary Band Trunk Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Agassiz A (1873) The history of Balanoglossus and Tornaria. Mem Am Acad Arts Sci 9:421–436Google Scholar
  2. Al C, Colwin LH (1950) The developmental capacities of separated early blastomeres of an enteropneust, Saccoglossus kowalevskii. J Exp Zool 115:263–295Google Scholar
  3. Allman GJ (1869) Rhabdopleura normani, Allman, nov. gen. et sp. Report of the British Association for the Advancement of Science 311–312Google Scholar
  4. Anderson K (1907) Die Pterobranchier der schwedischen Südpolar-Expedition 1901–1903. Wiss Ergebn Schwedischen Südpolar 5:1–122Google Scholar
  5. Angerer LM, Oleksyn DW, Logan CY, McClay DR, Dale L, Angerer RC (2000) A BMP pathway regulates cell fate allocation along the sea urchin animal-vegetal embryonic axis. Development (Cambridge, England) 127:1105–1114Google Scholar
  6. Angerer LM, Yaguchi S, Angerer RC, Burke RD (2011) The evolution of nervous system patterning: insights from sea urchin development. Development (Cambridge, England) 138:3613–3623Google Scholar
  7. Arendt D, Nübler-Jung K (1996) Common ground plans in early brain development in mice and flies. Bioessays 18:255–259PubMedGoogle Scholar
  8. Aronowicz J, Lowe CJ (2006) Hox gene expression in the hemichordate Saccoglossus kowalevskii and the evolution of deuterostome nervous systems. Integr Comp Biol 46:890–901PubMedGoogle Scholar
  9. Ax P (2001) Das System der Metazoa III. Ein Lehrbuch der phylogenetischen Systematik. Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  10. Balser EJ, Ruppert EE (1990) Structure, ultrastructure and function of the preoral heart-kidney in Saccoglossus kowalevskii (Hemichordata, Enteropneusta) including new data on the stomochord. Acta Zool 71:235–249Google Scholar
  11. Barrington EJ (1965) The biology of Hemichordata and Protochordata. WH Freeman, San FranciscoGoogle Scholar
  12. Bateson W (1884) The early stages of the development of Balanoglossus (sp. incert.). Q J Microsc Sci NS 24:208–236, pls 18–21Google Scholar
  13. Bateson W (1885) The later stages in the development of Balanoglossus kowalevskii, with a suggestion on the affinities of the Enteropneusta. Q J Microsc Sci 25:81–128Google Scholar
  14. Bateson W (1886) Continued account of the later stages in the development of Balanoglossus kowalevskii, and the morphology of the Enteropneusta. Q J Microsc Sci 26:511–533Google Scholar
  15. Benito J, Pardos F (1997) Hemichordata. In: Harrison FW, Ruppert EE (eds) Microscopic anatomy of invertebrates, vol 15. Wiley-Liss, New York, pp 15–101Google Scholar
  16. Bertrand S, Escriva H (2011) Evolutionary crossroads in developmental biology: amphioxus. Development 138:4819–4830PubMedGoogle Scholar
  17. Bertrand S, Camasses A, Somorjai I, Belgacem MR, Chabrol O, Escande M, Pontarotti P, Escriva H (2011) Amphioxus FGF signaling predicts the acquisition of vertebrate morphological traits. Proc Natl Acad Sci 108:9160–9165PubMedCentralPubMedGoogle Scholar
  18. Bourlat SJ, Juliusdottir T, Lowe CJ, Freeman R, Aronowicz J, Kirschner M, Lander ES, Thorndyke M, Nakano H, Kohn AB, Heyland A, Moroz LL, Copley RR, Telford MJ (2006) Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida. Nature 444:85–88PubMedGoogle Scholar
  19. Bourne GC (1889) On a Tornaria found in British seas. J Mar Biol Assoc 1:63–68, pls 7–8Google Scholar
  20. Brandenburger JL, Woollacott RM, Eakin RE (1973) Fine structure of the eyespots in tornaria larvae. Z Zellforsch 142:605–613Google Scholar
  21. Bullock TH (1946) The anatomical organization of the nervous system of enteropneusts. Q J Microsc Sci 86:55–111, pls2–8Google Scholar
  22. Bullock TH (1965) The nervous system of hemichordates. In: Bullock TH and Horridge GA (eds.) Structure and Function in the Nervous Systems of Invertebrates. WH Freeman and Co, San FranciscoGoogle Scholar
  23. Burdon-Jones C (1952) Development and biology of the larva of Saccoglossus horsti (Enteropneusta). Phil Trans R Soc B 236:553–590Google Scholar
  24. Burke RD, Angerer LM, Elphick MR, Humphrey GW, Yaguchi SS, Kiyama T, Liang S, Mu X, Agca C, Klein WH, Brandhorst BP, Rowe M, Wilson K, Churcher AM, Taylor JS, Chen N, Murray G, Wang DY, Mellott D, Hallbook F, Olinski R, Thorndyke MC (2006) A genomic view of the sea urchin nervous system. Dev Biol 300:434–460PubMedCentralPubMedGoogle Scholar
  25. Byrne M, Cisternas P (2002) Development and distribution of the peptidergic system in larval and adult Patiriella: comparison of sea star bilateral and radial nervous systems. J Comp Neurol 451:101–114PubMedGoogle Scholar
  26. Byrne M, Nakajima Y, Chee FC, Burke RD (2007) Apical organs in echinoderm larvae: insights into larval evolution in the Ambulacraria. Evol Dev 9:432–445PubMedGoogle Scholar
  27. Cameron CB (2005) A phylogeny of the hemichordates based on morphological characters. Can J Zool 83:196–215Google Scholar
  28. Cameron RA, Davidson EH (1991) Cell type specification during sea urchin development. Trends Genet 7:212–218PubMedGoogle Scholar
  29. Cameron RA, Hough-Evans BR, Britten RJ, Davidson EH (1987) Lineage and fate of each blastomere of the eight-cell sea urchin embryo. Genes Dev 1:75–85PubMedGoogle Scholar
  30. Cameron RA, Fraser SE, Britten RJ, Davidson EH (1989) The oral-aboral axis of a sea urchin embryo is specified by first cleavage. Development (Cambridge, England) 106:641–647Google Scholar
  31. Cameron CB, Garey JR, Swalla BJ (2000) Evolution of the chordate body plan: new insights from phylogenetic analyses of deuterostome phyla. Proc Natl Acad Sci U S A 97:4469–4474PubMedCentralPubMedGoogle Scholar
  32. Cannon JT, Rychel AL, Eccleston H, Halanych KM (2009) Molecular phylogeny of hemichordata, with updated status of deep-sea enteropneusts. Mol Phylogenet Evol 52:17–24PubMedGoogle Scholar
  33. Caron J-B, Morris SC, Cameron CB (2013) Tubicolous enteropneusts from the Cambrian period. Nature 495:503–506PubMedGoogle Scholar
  34. Chen SH, Li KL, Lu IH, Wang YB, Tung CH, Ting HC, Lin CY, Lin CY, Su YH, Yu JK (2014) Sequencing and analysis of the transcriptome of the acorn worm Ptychodera flava, an indirect developing hemichordate. Mar Genomics 15:35–43PubMedGoogle Scholar
  35. Cho S-J, Vallès Y, Giani VC, Seaver EC, Weisblat DA (2010) Evolutionary dynamics of the wnt gene family: a lophotrochozoan perspective. Mol Biol Evol 27:1645–1658PubMedCentralPubMedGoogle Scholar
  36. Cisternas P, Byrne M (2003) Peptidergic and serotonergic immunoreactivity in the metamorphosing ophiopluteus of Ophiactis resiliens (Echinodermata, Ophiuroidea). Invertebr Biol 122:177–185Google Scholar
  37. Colwin AL, Colwin LH (1951) Relationships between the egg and larva of Saccoglossus kowalevskii (Enteropneusta): axes and planes: general prospective significance of the early blastomeres. J Exp Zool 117:111–137Google Scholar
  38. Colwin AL, Colwin LH (1953) The normal embryology of Saccoglossus kowalevskii. J Morphol 92:401–453Google Scholar
  39. Croce J, McClay D (2006) The canonical Wnt pathway in embryonic axis polarity. Semin Cell Dev Biol 17:168–174PubMedGoogle Scholar
  40. Cunningham D, Casey ES (2014) Spatiotemporal development of the embryonic nervous system of Saccoglossus kowalevskii. Dev Biol 386:252–263PubMedGoogle Scholar
  41. Darras S, Gerhart J, Terasaki M, Kirschner M, Lowe CJ (2011) Beta-catenin specifies the endomesoderm and defines the posterior organizer of the hemichordate Saccoglossus kowalevskii. Development 138:959–970PubMedCentralPubMedGoogle Scholar
  42. Dawydoff C (1907) Sur la morphologie des formations cardiope ‘ricardique des Enteropneusts. Zool Anz 31:352–362Google Scholar
  43. De Robertis EM, Kuroda H (2004) Dorsal-ventral patterning and neural induction in Xenopus embryos. Annu Rev Cell Dev Biol 20:285–308PubMedCentralPubMedGoogle Scholar
  44. De Robertis EM, Sasai Y (1996) A common plan for dorsoventral patterning in Bilateria. Nature 380:37–40PubMedGoogle Scholar
  45. De Robertis EM, Larraín J, Oelgeschläger M, Wessely O (2000) The establishment of Spemann’s organizer and patterning of the vertebrate embryo. Nat Rev Genet 1:171–181PubMedCentralPubMedGoogle Scholar
  46. Delle Chiaje S (1829) Memorie sulla storia e notomia degli animali senza vertebre del Regno di Napoli. Napoli 4:117–120Google Scholar
  47. Denes AS, Jékely G, Steinmetz PRH, Raible F, Snyman H, Prud’homme B, Ferrier DEK, Balavoine G, Arendt D (2007) Molecular architecture of annelid nerve cord supports common origin of nervous system centralization in Bilateria. Cell 129:277–288PubMedGoogle Scholar
  48. Dilly PN (1973) The larva of Rhabdopleura compacta (Hemichordata). Mar Biol (Berlin) 18:69–86Google Scholar
  49. Dilly PN (1975) The pterobranch Rhabdopleura compacta: its nervous system and phylogenetic position. Symp Zool Soc Lond 36:1–16Google Scholar
  50. Dilly PN (2013) Cephalodiscus reproductive biology (Pterobranchia, Hemichordata). Acta Zool. doi: 10.1111/azo.12015 Google Scholar
  51. Dohle W (2004) Die Verwandtschaftsbeziehungen der Großgruppen der Deuterostomier: alternative Hypothesen und ihre Begründungen. Sber Ges Naturf Freunde Berlin 43:123–162Google Scholar
  52. Duboc V, Röttinger E, Besnardeau L, Lepage T (2004) Nodal and BMP2/4 signaling organizes the oral-aboral axis of the sea urchin embryo. Dev Cell 6:397–410PubMedGoogle Scholar
  53. Duboc V, Röttinger E, Lapraz F, Besnardeau L, Lepage T (2005) Left-right asymmetry in the sea urchin embryo regulated by nodal signaling on the right side. Dev Cell 9:147–158PubMedGoogle Scholar
  54. Echelard Y, Epstein DJ, St-Jacques B, Shen L, Mohler J, McMahon JA, McMahon AP (1992) Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75:1417–1430Google Scholar
  55. Edgecombe G, Giribet G, Dunn C, Hejnol A, Kristensen R, Neves R, Rouse G, Worsaae K, Sørensen M (2011) Higher-level metazoan relationships: recent progress and remaining questions. Org Divers Evol 11:151–172Google Scholar
  56. Eschscholtz F (1825) Bericht über die zoologische Ausbeute der Reise von Kronstadt bis St.-Peter und Paul. Oken’s Isis. pp 734–747Google Scholar
  57. Fletcher RB, Baker JC, Harland RM (2006) FGF8 splice forms mediate early mesoderm and posterior neural tissue formation in Xenopus. Development 133:1703–1714PubMedGoogle Scholar
  58. Franz V (1927) Morphologie der Akranier. Z Anat 27:464–692Google Scholar
  59. Freeman R, Ikuta T, Wu M, Koyanagi R, Kawashima T, Tagawa K, Humphreys T, Fang G-C, Fujiyama A et al (2012) Identical genomic organization of two hemichordate Hox clusters. Curr Biol 22:2053–2058, 1–6PubMedCentralPubMedGoogle Scholar
  60. Fritzenwanker JH, Gerhart J, Freeman RM, Lowe CJ (2014) The Fox/Forkhead transcription factor family of the hemichordate Saccoglossus kowalevskii. EvoDevo 5:17PubMedCentralPubMedGoogle Scholar
  61. Gillis JA, Fritzenwanker JH, Lowe CJ (2011) A stem-deuterostome origin of the vertebrate pharyngeal transcriptional network. Proc R Soc B Biol Sci 279:237–246Google Scholar
  62. Goldschmid A (2007) Hemichordata. In: Westheide W, Rieger R (eds) Spezielle Zoologie, vol 1, 2nd edn, Einzeller und wirbellose Tiere. Elsevier GmbH, Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  63. Gonzalez P, Cameron CB (2009) The gill slits and pre-oral ciliary organ of Protoglossus (Hemichordata: Enteropneusta) are filter-feeding structures. Biol J Linn Soc Lond 98:898–906Google Scholar
  64. Goodrich ES (1917) ‘Proboscis pores’ in craniate vertebrates, a suggestion concerning the premandibular somites and hypophysis. Q J Microsc Sci 62:539–553Google Scholar
  65. Green SA, Norris RP, Terasaki M, Lowe CJ (2013) FGF signaling induces mesoderm in the hemichordate Saccoglossus kowalevskii. Development (Cambridge, England) 140:1024–1033Google Scholar
  66. Hadfield M (1975) Hemichordata. In: Giese AC, Pearse JS (eds) Reproduction of marine invertebrates. Academic, New York, pp 185–240Google Scholar
  67. Hamada H, Meno C, Watanabe D, Saijoh Y (2002) Establishment of vertebrate left-right asymmetry. Nat Rev Genet 3:103–113PubMedGoogle Scholar
  68. Harada Okai N, Taguchi S, Shoguchi E, Tagawa K (2001) Embryonic expression of a hemichordate distal-less gene. Scholar
  69. Harada Y, Shoguchi E, Taguchi S, Okai N, Humphreys T, Tagawa K, Satoh N (2002) Conserved expression pattern of BMP-2/4 in hemichordate acorn worm and echinoderm sea cucumber embryos. Zool Sci 19:1113–1121PubMedGoogle Scholar
  70. Harmer SF (1905) The Pterobranchia of the Siboga Expedition with an account of other species. In: Weber M (ed) Siboga-Expeditie: uitkomsten op zoölogisch, botanisch, oceanographisch en geologisch gebied verzameld in Nederlandsch Oost-Indië 1899–1900 aan boord HM Siboga onder commando van Luitenant ter Zee 1e kl GF Tydeman. E. J Brill, Leyden, p 132Google Scholar
  71. Hay-Schmidt A (2000) The evolution of the serotonergic nervous system. Phil Trans R Soc Lon B 267:1071–1079Google Scholar
  72. Hejnol A, Obst M, Stamatakis A, Ott M, Rouse GW, Edgecombe GD, Martinez P, Baguñà J, Bailly X, Jondelius U, Wiens M, Müller WE, Seaver E, Wheeler WC, Martindale MQ, Giribet G, Dunn CW (2009) Assessing the root of bilaterian animals with scalable phylogenomic methods. Proc R Soc Lond B 276:4261–4270Google Scholar
  73. Henry JQ, Tagawa K, Martindale M (2001) Deuterostome evolution: early development in the enteropneust hemichordate, Ptychodera flava. Evol Dev 3:375–390PubMedGoogle Scholar
  74. Holland LZ, Carvalho JE, Escriva H, Laudet V, Schubert M, Shimeld SM, Yu J-K (2013) Evolution of bilaterian central nervous systems: a single origin? EvoDevo 4:27PubMedCentralPubMedGoogle Scholar
  75. Holland ND, Clague DA, Gordon DP, Gebruk A, Pawson DL, Vecchione M (2005) ‘Lophenteropneust’ hypothesis refuted by collection and photos of new deep-sea hemichordates. Nature 434:374–376Google Scholar
  76. Holley SA, Ferguson EL (1997) Fish are like flies are like frogs: conservation of dorsal-ventral patterning mechanisms. Bioessays 19:281–284PubMedGoogle Scholar
  77. Hyman LH (1955) The Invertebrates, vol 4, Echinodermata. McGraw-Hill, New YorkGoogle Scholar
  78. Hyman LH (1959) The invertebrates, vol 5, Smaller coelomate groups. McGraw-Hill Book Company, New YorkGoogle Scholar
  79. Ikuta T, Miyamoto N, Saito Y, Wada H, Satoh N, Saiga H (2009) Ambulacrarian prototypical Hox and ParaHox gene complements of the indirect-developing hemichordate Balanoglossus simodensis. Dev Genes Evol 219(7):383–389PubMedGoogle Scholar
  80. Imai KS, Satoh N, Satou Y (2002) Early embryonic expression of FGF4/6/9 gene and its role in the induction of mesenchyme and notochord in Ciona savignyi embryos. Development 129:1729–1738PubMedGoogle Scholar
  81. Kaul S, Stach T (2010) Ontogeny of the collar cord: neurulation in the hemichordate Saccoglossus kowalevskii. J Morphol 271:1240–1259Google Scholar
  82. Kaul-Strehlow S, Stach T (2011) The pericardium in the deuterostome Saccoglossus kowalevskii (Enteropneusta) develops from the ectoderm via schizocoely. Zoomorphology 130:107–120Google Scholar
  83. Kaul-Strehlow S, Stach T (2013) A detailed description of the development of the hemichordate Saccoglossus kowalevskii using SEM, TEM, Histology and 3D-reconstructions. Frontiers in Zoology 10:53Google Scholar
  84. Kim GJ, Yamada A, Nishida H (2000) An FGF signal from endoderm and localized factors in the posterior-vegetal egg cytoplasm pattern the mesodermal tissues in the ascidian embryo. Development 127:2853–2862PubMedGoogle Scholar
  85. Kimelman D (2006) Mesoderm induction: from caps to chips. Nat Rev Genet 7:360–372PubMedGoogle Scholar
  86. Knight-Jones EW (1952) On the nervous system of Saccoglossus cambrensis (Enteropneusta). Philos Trans R Soc Lond B 236:315–354Google Scholar
  87. Kowalevsky A (1866) Anatomie des Balanoglossus Delle Chiaje. Mem Acad Imp Sc St Petersbourg 7:1–18Google Scholar
  88. Krohn A (1854) Beobachtungen über Echinodermenlarven. Arch Anat Physiol wiss Med 208–213Google Scholar
  89. Lankester ER (1884) A Contribution of the knowledge of Rhabdopleura. Q J Microsc Sci 96:622–647Google Scholar
  90. Lapraz F, Besnardeau L, Lepage T (2009) Patterning of the dorsal-ventral axis in echinoderms: insights into the evolution of the BMP-chordin signaling network. PLoS Biol 7:e1000248PubMedCentralPubMedGoogle Scholar
  91. Lee PN, Pang K, Matus DQ, Martindale MQ (2006) A WNT of things to come: evolution of Wnt signaling and polarity in cnidarians. Semin Cell Dev Biol 17:157–167PubMedGoogle Scholar
  92. Lemaire P (2011) Evolutionary crossroads in developmental biology: the tunicates. Development 138:2143–2152PubMedGoogle Scholar
  93. Lemons D, Fritzenwanker JH, Gerhart J, Lowe CJ, Mcginnis W (2010) Co-option of an anteroposterior head axis patterning system for proximodistal patterning of appendages in early bilaterian evolution. Dev Biol 344:358–362PubMedCentralPubMedGoogle Scholar
  94. Lester SM (1985) Cephalodiscus sp. (Hemichordata: Pterobranchia): observations of functional morphology, behavior and occurrence in shallow water around Bermuda. Mar Biol 85:263–268Google Scholar
  95. Lester SM (1988a) Ultrastructure of adult gonads and development and structure of the larva of Rhabdopleura normani (Hemichordata: Pterobranchia). Acta Zool 69:95–109Google Scholar
  96. Lester SM (1988b) Settlement and Metamorphosis of Rhabdopleura normani (Hemichordata: Pterobranchia). Acta Zool 69:111–120Google Scholar
  97. Lowe CJ, Wu M, Salic A, Evans L, Lander E, Stange-ThomannN GCE, Gerhart J, Kirschner M (2003) Anteroposterior patterning in hemichordates and the origin of the chordate nervous system. Cell 113:853–865PubMedGoogle Scholar
  98. Lowe CJ, Tagawa K, Humphreys T, Kirschner M, Gerhart J (2004) Hemichordate embryos: procurement, culture, and basic methods. Methods Cell Biol 74:171–194Google Scholar
  99. Lowe CJ, Terasaki M, Wu M, Freeman RM, Runft L, Kwan K, Haigo S, Aronowicz J, Lander E, Gruber C, Smith M, Kirschner M, Gerhart J (2006) Dorsoventral patterning in hemichordates: insights into early chordate evolution. PLoS Biol 4:e291PubMedCentralPubMedGoogle Scholar
  100. Luttrell S, Konikoff C, Byrne A, Bengtsson B, Swalla BJ (2012) Ptychoderid hemichordate neurulation without a notochord. Integr Comp Biol 52:829–834PubMedGoogle Scholar
  101. Maisey JG (1986) Heads and tails: a chordate phylogeny. Cladistics 2:201–256Google Scholar
  102. Martin BL, Kimelman D (2009) Wnt signaling and the evolution of embryonic posterior development. Curr Biol 19:R215–R219PubMedGoogle Scholar
  103. Mayer G, Bartolomaeus T (2003) Ultrastructure of the stomochord and the heart-glomerulus complex in Rhabdopleura compacta (Pterobranchia): phylogenetic implications. Zoomorphology 122:125–133Google Scholar
  104. McClay DR (2011) Evolutionary crossroads in developmental biology: sea urchins. Development 138:2639–2648PubMedCentralPubMedGoogle Scholar
  105. Merker S, Gruhl A, Stach T (2013) Comparative anatomy of the heart – glomerulus complex of Cephalodiscus gracilis (Pterobranchia): structure, function, and phylogenetic implications. Zoomorphology 133:83–98Google Scholar
  106. Metschnikoff E (1870) Untersuchungen über die Metamorphose einiger Seethiere. Z Wiss Zool 20:131–144Google Scholar
  107. Metschnikoff E (1881) Über die systematische Stellung von Balanoglossus. Zool Anz 4:139–157Google Scholar
  108. Mierzejewski P (2004) Classification of the cephalodiscoidea. iNet: Graptolite Net:
  109. M’Intosh WC (1882) Preliminary notice of Cephalodiscus, a new type allied to Prof. Allman’s Rhabdopleura, dredged in H. M. S. ‘Challenger’. Ann Mag Nat Hist Ser 5:337–348Google Scholar
  110. Miyamoto N, Wada H (2013) Hemichordate neurulation and the origin of the neural tube. Nat Commun 4:2713PubMedGoogle Scholar
  111. Miyamoto N, Nakajima Y, Wada H, Saito Y (2010) Development of the nervous system in the acorn worm Balanoglossus simodensis: insights into nervous system evolution. Evol Dev 12:416–424PubMedGoogle Scholar
  112. Morgan TH (1891) The growth and metamorphosis of Tornaria. J Morphol 5:407–458Google Scholar
  113. Morgan TH (1894) The development of Balanoglossus. J Morphol 9:1–86Google Scholar
  114. Morokuma J, Ueno M, Kawanishi H, Saiga H, Nishida H (2002) HrNodal, the ascidian nodal -related gene, is expressed in the left side of the epidermis, and lies upstream of HrPitx. Dev Genes Evol 212:439–446PubMedGoogle Scholar
  115. Müller J (1850) Ueber die Larve und die Metamorphose der Echinodermen. Akad Wiss Berlin 2:75–109Google Scholar
  116. Nakano H, Murabe N, Amemiya S, Nakajima Y (2006) Nervous system development in the sea cucumber Stichopus japonicus. Dev Biol 292:205–212PubMedGoogle Scholar
  117. Nezlin LP, Yushin VV (2004) Structure of the nervous system in the tornaria larva of Balanoglossus proterogonius (Hemichordata: Enteropneusta) and its phylogenetic implications. Zoomorphology 123:1–13Google Scholar
  118. Niehrs C (2010) On growth and form: a Cartesian coordinate system of Wnt and BMP signaling specifies bilaterian body axes. Development (Cambridge, England) 137:845–857Google Scholar
  119. Nielsen C (2011) Animal evolution. Interrelationships of the living phyla, 2nd edn. Oxford University Press, New YorkGoogle Scholar
  120. Nielsen C, Hay-Schmidt A (2007) Development of the enteropneust Ptychodera flava: ciliary bands and nervous system. J Morphol 268:551–570PubMedGoogle Scholar
  121. Nomaksteinsky M, Röttinger E, Dufour H, Chettouh Z, Lowe C, Martindale M, Brunet J (2009) Centralization of the deuterostome nervous system predates chordates. Curr Biol 19:1264–1269PubMedGoogle Scholar
  122. Okai N, Tagawa K, Humphreys T, Satoh N, Ogasawara M (2000) Characterization of gill-specific genes of the acorn worm Ptychodera flava. Dev Dyn 217:309–319PubMedGoogle Scholar
  123. Osborn KJ, Kuhnz LA, Priede IG, Urata M, Gebruk AV, Holland ND (2012) Diversification of acorn worms (Hemichordata, Enteropneusta) revealed in the deep sea. Proc R Soc B 279:1646–1654PubMedCentralPubMedGoogle Scholar
  124. Pani AM, Mullarkey EE, Aronowicz J, Assimacopoulos S, Grove EA, Lowe CJ (2012) Ancient deuterostome origins of vertebrate brain signalling centres. Nature 483:289–294PubMedCentralPubMedGoogle Scholar
  125. Philippe H, Brinkmann H, Copley RR, Moroz LL, Nakano H, Poustka AJ, Wallberg A, Peterson KJ, Telford MJ (2011) Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470:255–258PubMedCentralPubMedGoogle Scholar
  126. Rao KP (1953) The development of Glandiceps (Enteropneusta; Spengelidae). J Morphol 93:1–17Google Scholar
  127. Rehkämper G, Welsch U, Dilly PN (1987) Fine structure of the ganglion of Cephalodiscus gracilis (pterobranchia, hemichordata). J Comp Neurol 259:308–315Google Scholar
  128. Röttinger E, Lowe CJ (2012) Evolutionary crossroads in developmental biology: hemichordates. Development 139:2463–2475PubMedGoogle Scholar
  129. Röttinger E, Martindale M (2011) Ventralization of an indirect developing hemichordate by NiCl suggests a conserved mechanism of dorsoventral (D/V) patterning in Ambulacraria (hemichordates and echinoderms). Dev Biol 354:173–190PubMedGoogle Scholar
  130. Ruppert EE (2005) Key characters uniting hemichordates and chordates: homologies or homoplasies? Can J Zool 83:8–23Google Scholar
  131. Ruppert EE, Balser EJ (1986) Nephridia in the larvae of hemichordates and echinoderms. Biol Bull 171:188–196Google Scholar
  132. Rychel AL, Swalla BJ (2007) Development and evolution of chordate cartilage. J Exp Zool 308:325–335Google Scholar
  133. Sato T (1936) Vorläufige Mitteilung über Atubaria heterolopha gen. nov. sp. nov., einen in freiem Zustand aufgefundenen Pterobranchier aus dem Stilen Ozean. Zool Anz 115:97–106Google Scholar
  134. Sato A, Holland PW (2008) Asymmetry in a pterobranch hemichordate and the evolution of left-right patterning. Dev Dyn 237:3634–3639PubMedGoogle Scholar
  135. Sato A, Bishop JDD, Holland PWH (2008) Developmental biology of pterobranch hemichordates: history and perspectives. Genesis 46:587–591PubMedGoogle Scholar
  136. Sato A, White-Cooper H, Doggett K, Holland PW (2009) Degenerate evolution of the hedgehog gene in a hemichordate lineage. Proc Natl Acad Sci U S A 106:7491–7494PubMedCentralPubMedGoogle Scholar
  137. Saudemont A, Haillot E, Mekpoh F, Bessodes N, Quirin M, Lapraz F, Duboc V, Röttinger E, Range R, Oisel A et al (2010) Ancestral regulatory circuits governing ectoderm patterning downstream of Nodal and BMP2/4 revealed by gene regulatory network analysis in an echinoderm. PLoS Genet 6:e1001259PubMedCentralPubMedGoogle Scholar
  138. Schaeffer B (1987) Deuterostome monophyly and phylogeny. Evol Biol 21:179–235Google Scholar
  139. Schepotieff A (1907) Die Pterobranchier. Anatomische und histologische Untersuchungen über Rhabdopleura normani Allman und Cephalodiscus dodecalophus M’int. 1. Teil. Rhabdopleura normani. 1. Abschnitt. Die Anatomie von Rhabdopleura. Zool Jahrb Anat 23:463–534Google Scholar
  140. Silén L (1950) On the nervous system of Glossobalanus marginatus Meek (Enteropneusta). Acta Zool 31:149–175Google Scholar
  141. Slack JM, Darlington BG, Gillespie LL, Godsave SF, Isaacs HV, Paterno GD (1989) The role of fibroblast growth factor in early Xenopus development. Development 107(Suppl):141–148Google Scholar
  142. Smith S, Douglas R, da Silva K, Swalla B (2003) Morphological and molecular identification of Saccoglossus species (Hemichordata: Harrimaniidae) in the Pacific Northwest. Can J Zool 81:133–141Google Scholar
  143. Spengel JW (1893) Die Enteropneusten des Golfes von Neapel und der angrenzenden Meeres-Abschnitte. Fauna und Flora des Golfes von Neapel, vol 18. Engelmann, LeipzigGoogle Scholar
  144. Spengel JW (1901) Die Benennung der Enteropneusten–Gattungen. Zool Jahrb Abt Syst 15:209–218Google Scholar
  145. Stach T (2002) Minireview: on the homology of the protocoel in Cephalochordata and ‘lower’ Deuterostomia. Acta Zool 83:25–31Google Scholar
  146. Stach T (2013) Larval anatomy of the pterobranch Cephalodiscus gracilis supports secondarily derived sessility concordant with molecular phylogenies. Naturwiss. doi: 10.1007/s00114-013-1117-3 PubMedGoogle Scholar
  147. Stach T, Kaul S (2012) The postanal tail of the enteropneust Saccoglossus kowalevskii is a ciliary creeping organ without distinct similarities to the chordate tail. Acta Zool 92:150–160Google Scholar
  148. Stach T, Gruhl A, Kaul-Strehlow S (2012) The central and peripheral nervous system of Cephalodiscus gracilis (Pterobranchia, Deuterostomia). Zoomorphology 131:11–24Google Scholar
  149. Stainier DYR (2002) A glimpse into the molecular entrails of endoderm formation. Genes Dev 16:893–907PubMedGoogle Scholar
  150. Stebbing ARD (1970) Aspects of the reproduction and life cycle of Rhabdopleura compacta (Hemichordata). Mar Biol (Berlin) 5:205–212Google Scholar
  151. Stiasny G (1914a) Studium über die Entwicklung des Balanoglossus clavigerus Delle Chiaje. I. Die Entwicklung der Tornaria. Mitt Zool Stat Neapel 22:36–75Google Scholar
  152. Stiasny G (1914b) Studium über die Entwicklung des Balanoglossus clavigerus Delle Chiaje. II. Darstellung der weiteren Entwicklung bis zur Metamorphose. Mitt Zool Stat Neapel 22:255–290Google Scholar
  153. Su Y-H, Davidson EH (2009) A perturbation model of the gene regulatory network for oral and aboral ectoderm specification in the sea urchin embryo. Dev Biol 329:410–421PubMedCentralPubMedGoogle Scholar
  154. Tagawa K, Nishino A, Humphreys T, Satoh N (1998a) The spawning and early development of the Hawaiian acorn worm (hemichordate), Ptychodera flava. Zool Sci 15:85–91PubMedGoogle Scholar
  155. Tagawa K, Humphreys T, Satoh N (1998b) Novel pattern of Brachyury gene expression in hemichordate embryos. Mech Dev 75:139–143PubMedGoogle Scholar
  156. Taguchi S, Tagawa K, Humphreys T, Nishino A, Satoh N, Harada Y (2000) Characterization of a hemichordate fork head/HNF-3 gene expression. Dev Genes Evol 210:11–17PubMedGoogle Scholar
  157. Technau U, Scholz CB (2003) Origin and evolution of endoderm and mesoderm. Int J Dev Biol 47:531–539PubMedGoogle Scholar
  158. Ullrich-Lüter EM, Dupont S, Arboleda E, Hausen H, Arnone MI (2011) Unique system of photoreceptors in sea urchin tube feet. Proc Natl Acad Sci 108:8367–8372PubMedCentralPubMedGoogle Scholar
  159. Urata M, Yamaguchi M (2004) The development of the enteropneust hemichordate Balanoglossus misakiensis Kuwano. Zool Sci 21:533–540PubMedGoogle Scholar
  160. Urata M, Iwasaki S, Ohtsuka S, Yamaguchi M (2014) Development of the swimming acorn worm Glandiceps hacksi: similarity to holothuroids. Evol Dev 16:149–154PubMedGoogle Scholar
  161. van der Horst CJ (1939) In: Bronn HG (ed) Hemichordata. Akademische Verlagsgesellschaft mbH, Leipzig, 737 pGoogle Scholar
  162. Whitman M (2001) Nodal signaling in early vertebrate embryos themes and variations. Dev Cell 1:605–617PubMedGoogle Scholar
  163. Willey A (1898) Spengelia, a new genus of Enteropneusta. Q.J Microsc Sci 40:623–630Google Scholar
  164. Worsaae K, Sterrer W, Kaul-Strehlow S, Hay-Schmidt A, Giribet G (2012) An anatomical description of a miniaturized acorn worm (hemichordata, enteropneusta) with asexual reproduction by paratomy. PLoS One 7(11):e48529. doi: 10.1371/journal.pone.0048529 PubMedCentralPubMedGoogle Scholar
  165. Young JZ (1962) The life of vertebrates, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  166. Yu J-K, Holland LZ, Holland ND (2002) An amphioxus nodal gene (AmphiNodal) with early symmetrical expression in the organizer and mesoderm and later asymmetrical expression associated with left-right axis formation. Evol Dev 4:418–425PubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  1. 1.Department of Integrative ZoologyUniversity of ViennaViennaAustria
  2. 2.Institute for Research on Cancer and AgingUniversité Nice Sophia Antipolis, IRCAN, UMR 7284NiceFrance
  3. 3.CNRS, IRCAN, UMR 7284NiceFrance
  4. 4.INSERM, IRCAN, U1081NiceFrance

Personalised recommendations